• Title/Summary/Keyword: Size reduction

Search Result 3,667, Processing Time 0.034 seconds

Size Reduction of HF Whip Antenna for Ship Communication (선박 통신용 HF 휩 안테나의 소형화)

  • Park, Dong-Kook;Yang, Gyu-Sik;Jeong, Gi-Ryong;Kim, Jeong-Chang;Jung, Sung-Hun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • In this paper, we present the size reduction method of HF whip antenna for ship communication. To reduce the size of the HF whip, the end part of linear whip is modified to helical type. We designed the whip antenna with 60% size of the commercial whip antenna and carried out communication experiments using the commercial and the designed whip antennas. From the experimental results, we found that the proposed whip antenna can replace the commercial whip antenna for ship communication.

Controlling Size and Distribution of Silver Nanoparticles Generated in Inorganic Silica Nanofibers Using Poly(vinyl pyrrolidone)

  • Min, Kyung-Dan;Park, Won-Ho;Youk, Ji-Ho;Kwark, Young-Je
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.626-630
    • /
    • 2008
  • Poly(vinyl pyrrolidone) was used successfully to control the size and distribution of silver nanoparticles generated on inorganic silica nanofibers. The inorganic nanofibers were electro spun using sol-gel chemistry of silicates, and the diameter of the prepared nanofibers was unaffected by adding up to 7% of poly(vinyl pyrrolidone). The silver ions, in the form of silver nitrate, were introduced into the silica nanofibers and reduced to metallic silver by ultraviolet irradiation with a subsequent thermal treatment. The size of the generated silver particles was decreased dramatically by adding poly(vinyl pyrrolidone). The size of the silver nanoparticles was 73 nm when no poly(vinyl pyrrolidone) was added but 23 nm with the addition of only 1% of poly(vinyl pyrrolidone). The extent of reduction could be checked by determining the concentration of silver ions leached into water from the silica nanofibers. After thermal treatment of the silica nanofibers, more than 99% of the silver remained in the nanofibers, indicating almost complete reduction of the silver ions to silver metal.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Building Hybrid Stop-Words Technique with Normalization for Pre-Processing Arabic Text

  • Atwan, Jaffar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.65-74
    • /
    • 2022
  • In natural language processing, commonly used words such as prepositions are referred to as stop-words; they have no inherent meaning and are therefore ignored in indexing and retrieval tasks. The removal of stop-words from Arabic text has a significant impact in terms of reducing the size of a cor- pus text, which leads to an improvement in the effectiveness and performance of Arabic-language processing systems. This study investigated the effectiveness of applying a stop-word lists elimination with normalization as a preprocessing step. The idea was to merge statistical method with the linguistic method to attain the best efficacy, and comparing the effects of this two-pronged approach in reducing corpus size for Ara- bic natural language processing systems. Three stop-word lists were considered: an Arabic Text Lookup Stop-list, Frequency- based Stop-list using Zipf's law, and Combined Stop-list. An experiment was conducted using a selected file from the Arabic Newswire data set. In the experiment, the size of the cor- pus was compared after removing the words contained in each list. The results showed that the best reduction in size was achieved by using the Combined Stop-list with normalization, with a word count reduction of 452930 and a compression rate of 30%.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

pH Dependent Size and Size Distribution of Gold Nanoparticles

  • Kang, Aeyeon;Park, Dae Keun;Hyun, Sang Hwa;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.267.2-267.2
    • /
    • 2013
  • In the citrate reduction method of gold nanoparticle (AuNP) synthesis, pH of the reaction mixture can have a considerable impact on the size and size distribution of AuNPs. In this work, effects of pH variation upon the size and its distribution were examined systematically. As the initial pH was change from 5.5 to 10.5, it showed an optimal pH around 7.5. At this pH, both of the size and the size distribution showed their minimum values, which was verified by transmission electron microscopy and UV-vis spectroscopy. This occurrence of optimal pH was discussed with the results of in situ monitoring pH during the reaction of AuNP synthesis.

  • PDF

Preparation of Nickel Powders by the Reduction of Hydrazine from Diethanolamine Solutions (DEA 용액으로부터 히드라진의 환원 반응에 의한 니켈 분말 제조)

  • Choi, Eun-Young;Lee, Yoon-Bok;Yoon, Suk-Young;Kim, Kwang-Ho;Kim, Sin-Chun;Rhyim, Yaung-Mok;Kim, Hyong-Kuk;Kim, Ynng-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.432-436
    • /
    • 2005
  • Nickel powders synthesized by the reduction of hydrazine of nickel salts fiom diethanolamine(DEA) solution, and investigated the morphological characteristics of nickel powders with the addition of hydrazine, reaction temperature, the composition of mixed solvents. The addition of hydrazine in DEA solution largely affected on size control of nickel powders. Under $N_2H_4/Ni^{2+}$ molar ratio= 1.5 and 2.0 conditions, spherical nickel powders in the submicron range obtained, owing to higher the reduction rate. An increase of temperature increased the size of nickel particles. At $220^{\circ}C$ for 40 min, the nickel powders composed of polyhedral particles with high crystalline in the submicron range. The mixed volume ratio of TEA to DEA affected on the increase of particle size and the inhibition of agglomerate between particles.