• Title/Summary/Keyword: Size effect law

Search Result 160, Processing Time 0.022 seconds

Effect of Red-emitting Sr2.41F2.59B20.03O74.8:Eu0.12,Sm0.048 Phosphor on Color Rendering Index and Luminous Efficacy of White LEDs

  • Nguyen, Anh Q.D.;Nguyen, Vinh H.;Lee, Hsiao-Yi
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Color rendering index (CRI) and luminous efficacy (LE) are two key performance factors of white LEDs (WLED). While most recent works in optics focus on methodology to improve these factors, little attention has been dedicated to chemical composition of materials. This paper studies the effect of $Sr_{2.4}1F_{2.59}B_{20.03}O_{74.8}:Eu_{0.12},Sm_{0.048}$ phosphor (SrSm), in terms of concentration and particle size on CRI and LE of 8500 K - WLEDs. Importantly, the molar mass of the componential ions in SrSm are calculated to shed light on the connection between the chemical composition of the material of interest and the performance of WLEDs. Results show that CRI can be improved to a value of around 86 by boosting red-light components in WLEDs, for all 3 major configurations: conformal, in-cup, and remote phosphor. CRI value tends to decrease with larger size of particles, while LE value goes in the reverse direction. On the other hand, both CRI and LE appear to be reduced at higher concentration of SrSm. This light attenuation is analyzed by using the Lambert-Beer law and Mie-scattering theory.

POWER SPECTRUM ANALYSIS OF THE OMC1 IMAGE AT 1.1MM WAVELENGTH

  • Youn, So-Young;Kim, Sung-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.4
    • /
    • pp.93-99
    • /
    • 2012
  • We present a 1.1mm emission map of the OMC1 region observed with AzTEC, a new large-format array composed of 144 silicon-nitride micromesh bolometers, that was in use at the James Clerk Maxwell Telescope (JCMT). These AzTEC observations reveal dozens of cloud cores and a tail of filaments in a manner that is almost identical to the submillimeter continuum emission of the entire OMC1 region at 450 and $850{\mu}m$. We perform Fourier analysis of the image with a modified periodogram and the density power spectrum, which provides the distribution of the length scale of the structures, is determined. The expected value of the periodogram converges to the resulting power spectrum in the mean squared sense. The present analysis reveals that the power spectrum steepens at relatively smaller scales. At larger scales, the spectrum flattens and the power law becomes shallower. The power spectra of the 1.1mm emission show clear deviations from a single power law. We find that at least three components of power law might be fitted to the calculated power spectrum of the 1.1mm emission. The slope of the best fit power law, ${\gamma}{\approx}-2.7$ is similar to those values found in numerical simulations. The effect of beam size and the noise spectrum on the shape and slope of the power spectrum are also included in the present analysis. The slope of the power law changes significantly at higher spatial frequency as the beam size increases.

Market Access Approach to Urban Growth

  • MOON, YOON SANG
    • KDI Journal of Economic Policy
    • /
    • v.42 no.3
    • /
    • pp.1-32
    • /
    • 2020
  • This paper studies urban growth in Korean cities. First, I document that population growth patterns change over time and that the current population distribution supports random urban growth. I confirm two empirical laws-Zipf's law and Gibrat's law-both of which hold in the period of 1995-2015, but do not hold in the earlier period of 1975-1995. Second, I find a systematic employment growth pattern of Korean cities in spite of the random population growth. I examine market access effects on employment growth. Market access, a geographical advantage, has a significant influence on urban employment growth. The market access effect is higher in the Seoul metropolitan area than in the rest of the country. This effect is stronger on employment growth in the manufacturing industry compared to employment growth in the service industry. These results are robust with various checks (e.g., different definitions of urban areas). The results here suggest that policymakers should consider geographical characteristics when they make policy decisions with respect to regional development.

Effect of rubber particles on properties and frost resistance of self-compacting concrete

  • Miao Liu;Jianhua Xiao;En Yang;Lijuan Su
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.269-276
    • /
    • 2023
  • In order to study the effect of rubber particle size and admixture on the frost resistance of self-compacting concrete, three self-compacting concrete specimens with equal volume replacement of fine aggregate by rubber particles of different particle sizes were prepared, while conventional self-compacting concrete was made as a comparison specimen. The degradation law of rubber aggregate self-compacted concrete under freeze-thaw cycles was investigated by fast-freezing method test. The results show that the rubber aggregate has some influence on the mechanical properties and freeze-thaw durability of the self-compacting concrete. With the increase of rubber aggregate, the compressive strength of self-compacting concrete gradually decreases, and the smaller the rubber aggregate particle size is, the smaller the effect on the compressive strength of the matrix; rubber aggregate can improve the frost resistance of self-compacting concrete, and the smaller the rubber particle size is, the more obvious the effect on the improvement of the frost resistance of the matrix under the same dosage. Through the research of this paper, it is recommended to use 60~80 purpose rubber aggregate and the substitution rate of 10% is chosen as the best effect.

The System Performance of Wireless CSMA/CA Protocol with Capture Effect

  • Dai, Jiang-Whai
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2004
  • This work presents a deterministic channel that rules according to inverse a power propagation law. The proposed channel model allows us to derive the lower bound and upper bound of packet's capture probability in Rayleigh fading and shadowing cellular mobile system. According to these capture probabilities, we analyze the system performance in the case of finite stations and finite communicated coverage of a base station. We also adopted a dynamic backoff window size to discuss the robustness of IEEE 802.11 draft standard. Some suggestions and conclusions from numerical results are given to establish the more strong CSMA/CA protocol.

The effect of the entrance size on the catch of trap for conger eel (스프링식 붕장어그물통발의 어획성능에 미치는 입구크기의 영향)

  • Kim, Seong-Hun;Park, Chang-Doo;Park, Seong-Wook;Shin, Jong-Keun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • Recently, Fishermen have required to expand the circumference of trap entrance for conger eel because it was difficult to take the catch out as well as to put the baits into. A series of fishing experiments was carried out in coastal areas of Tongyoung, Korea in 2008 and 2009 using the traps to describe the effect of the entrance size on the catch. The experimental traps (five types) were used in filed experiments with four types circumference size traps (140, 180, 220 and 260mm) with mesh size 22mm and another type was used the same one usually using in filed with mesh size 35mm (750mm circumference). The experiment results were, the conger eels of total length 35mm more or so were caught 85, 93, 142 and 176 individual by the experiment traps with mesh size 22mm as increase circumference size from 140mm to 260mm, respectively. And the small conger eels of the total length below 35mm to be prohibited to catch by law were caught 145, 160, 288 and 304 individual according to increase the circumference size of trap, respectively. In addition, in case of the trap with mesh size 22mm, bycatches were 230 - 260 individuals and much more than bycatches of the trap with mesh size 35mm. In conclusion, when we expand the circumference size of trap according to fishermen's requirement, we should review not only economic of fishery but also increasement the bycatch of non-target fishes and small size fishes.

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment

  • Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.191-207
    • /
    • 2020
  • This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.

The Effects of Object Size and Travel Distance on Human Speed Perception (물체의 크기와 이동거리에 따른 속도감 변화)

  • Park, Kyung-Soo;Choi, Jeong-A;Lee, Eun-Hye
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • Human perceptional speed is different from its real speed. There is lack of research that the perceptional speed is different from real speed in 2-dimension, because most research of speed perception has concentrated on points and lines. This research investigates the effects of object size on speed perception. In this research, we used 2-D circular objects of the different size, 0.9, 1.8 and $3.6^{\circ}$. The objects moved 9.0, 13.5 and $18.0^{\circ}$ with three different speeds, 6.0, 9.0 and $18.0^{\circ}$/s. Six participants were exposed to the environment with standard scene(size: $1.8^{\circ}$, speed: $9.0^{\circ}$/s and travel distance: $13.5^{\circ}$). After the first scene, another scene in which the object had changed to different sizes, speeds and distances, was shown to the participants. A magnitude estimation method was used to construct a scale of the perceived speed level. The relationship between the perceived and the actual speed level was explained by Stevens's power law that the value was 0.978 with the exponent of 0.992. The size of object had an effect on the speed perception but travel distance was not. The perceptional speed of bigger object was lower than of smaller object. It showed that the degrees of perceptional speed decreased as size of object increased.

Theoretical Study of Coherent Acoustic Inverse Method for Bubble Sizing in Bubbly Water

  • Choi, Bok-Kyoung;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.3-8
    • /
    • 1996
  • The bubble size distribution is critical information to understand sound propagation and ambient noise in the ocean. To estimate the bubble size distribution in a bubbly water, the sound attenuation has been only in the conventional acoustic bubble sizing method without considering the sound speed variation. However, the effect of the sound speed variation in bubbly water cannot be neglected because of its compressibility variation. The sound attenuation is also affected by the sound speed variation. In this paper, a coherent acoustic bubble sizing inverse technique is introduced as a new bubble sizing technique with considering sound speed variation as well as the sound attenuation. This coherent sizing method is theoretically verified with the bubble distribution functions of single-size, Gaussian, and power-law functions. Its numerical test results with the coherent acoustic bubble sizing method show good agreement with the given bubble distributions.

  • PDF