• Title/Summary/Keyword: Size Layer

Search Result 2,862, Processing Time 0.026 seconds

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model (제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형)

  • Oh, Woong Jin;Jung, Jae-Chil;Lee, Jung Hyun;Yeo, Jeong-gu;Lee, Da Hun;Park, Young Cheol;Kim, Hyunuk;Lee, Dong-Ho;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.

Color Filter Based on a Sub-wavelength Patterned Metal Grating (광파장 이하 주기를 갖는 금속 격자형 컬러필터)

  • Lee, Hong-Shik;Yoon, Yeo-Taek;Lee, Sang-Shin;Kim, Sang-Hoon;Lee, Ki-Dong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.383-388
    • /
    • 2007
  • A color filter was demonstrated incorporating a patterned metal grating in a quartz substrate. The filter is created in a metal layer perforated with a symmetric two-dimensional array of circular holes, with the pitch smaller than the wavelength of the visible light. A finite-difference time-domain simulation was performed to analyze the device by investigating the effect of structural parameters like the grating height, the period, the hole size, and the refractive index of the hole-filling material on its performance. The device performance was especially optimized by controlling the refractive index of the material comprising the holes of the grating. And two different devices were fabricated by means of the e-beam direct writing with the following design parameters: the grating height of 50 nm, the two pitches of 340 nm for the red color and 260 nm for the green color. For the prepared device with the period of 340 nm, the center wavelength was 680 nm and the peak transmission 57%. And for the other device with the pitch of 260 nm, the center wavelength was 550 nm and the peak transmission was 50%. The filling of the hole with a material whose refractive index is matched to that of the substrate has led to an increase of ${\sim}15%$ in the transmission efficiency.

RF and Optical properties of Graphene Oxide

  • Im, Ju-Hwan;Rani, J.R.;Yun, Hyeong-Seo;O, Ju-Yeong;Jeong, Yeong-Mo;Park, Hyeong-Gu;Jeon, Seong-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF

Preparation of CeO$_2$ Thin Films as an Insulation Layer and Electrical Properties of Pt/$SrBi_2$$Ta_2$$O_9$/$CeO_24/Si MFISFET (절연층인 CeO$_2$박막의 제조 및 Pt/$SrBi_2$$Ta_2$$O_9$/$CeO_24/Si MFISFET 구조의 전기적 특성)

  • Park, Sang-Sik
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.807-811
    • /
    • 2000
  • CeO$_2$ and SrBi$_2$Ta$_2$O$_{9}$ (SBT) thin films for MFISFET (Metal-ferroelectric-insulator-semiconductor-field effect transistor) were deposited by r.f. sputtering and pulsed laser ablation method, respectively. The effects of sputtering gas ratio(Ar:O$_2$) during deposition for CeO$_2$ films were investigated. The CeO$_2$ thin films deposited on Si(100) substrate at $600^{\circ}C$ exhibited (200) preferred orientation. The preferred orientation, Brain size and surface roughness of films decreased with increasing oxygen to argon gas ratio. The films deposited under the condition of Ar:O$_2$= 1 : 1 showed the best C- V characteristics. The leakage current of films showed the order of 10$^{-7}$ ~10$^{-8}$ A at 100kV/cm. The SBT thin films on CeO$_2$/Si substrate showed dense microstructure of polycrystalline phase. From the C-V characteristics of MFIS structure with SBT film annealed at 80$0^{\circ}C$, the memory window width was 0.9V at 5V The leakage current density of Pt/SBT/CeO$_2$/Si structure annealed at 80$0^{\circ}C$ was 4$\times$10$^{-7}$ /$\textrm{cm}^2$ at 5V.

  • PDF

A Study of Damage Assessment Caused by Hydrogen Gas Leak in Tube Trailer Storage Facilities (수소 Tube Trailer 저장시설에서의 수소가스 누출에 따른 사고피해예측에 관한 연구)

  • Kim, Jong-Rak;Hwang, Seong-Min;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.32-38
    • /
    • 2011
  • As the using rate of an explosive gas has been increased in the industrial site, the regional residents adjacent to the site as well as the site workers have frequently fallen into a dangerous situation. Damage caused by accident in the process using hydrogen gas is not confined only to the relevant process, but also is linked to a large scale of fire or explosion and it bring about heavy casualties. Therefore, personnel in charge should investigate the kinds and causes of the accident, forecast the scale of damage and also, shall establish and manage safety countermeasures. We, in Anti-Calamity Research Center, forecasted the scope of danger if break out a fire or/and explosion in hydrogen gas facilities of MLCC firing process. We selected piping leak accident, which is the most frequent accident case based on an actual analysis of accident data occurred. We select and apply piping leak accident which is the most frequent case based on an actual accident data as a model of damage forecasting scenario caused by accident. A jet fire breaks out if hydrogen gas leaks through pipe size of 10 mm ${\Phi}$ under pressure of 120 bar, and in case of $4kw/m^2$ of radiation level, the radiation heat can produce an effect on up to distance of maximum 12.45 meter. Herein, we are going to recommend safety security and countermeasures for improvement through forecasting of accident damages.

Study on Corrosion Characteristic of New Nb-containing Zr based Alloys for Fuel cladding (Nb 첨가 핵연료피복관용 Zr 신합금의 부식특성 연구)

  • Choe, Byeong-Gwon;Ha, Seung-Won;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.405-412
    • /
    • 2001
  • Corrosion tests were carried out in $360^{\circ}C$ water and $360^{\circ}C$ 70ppm LiOH solution to investigate the corrosion behavior of new zirconium alloys (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu). Microstructures of tested alloys were analyzed by optical microscope and TEM. The cross-sectional surface and crystalline structure of the oxide layer were analyzed by SEM and XRD. From the results of corrosion test, all the alloys showed higher corrosion rates in $360^{\circ}C$ 70ppm LiOH aqueous solution thats in $360^{\circ}C$ water. Especially, high Nb-containing alloy exhibited the acceleration of corrosion rate in LiOH solution. The low Nb- and Sn-added alloys showed better corrosion resistance than the Sn- free high Nb alloy. from the effect of final annealing on the corrosion, it was observed that the partially recrystallized alloys showed better corrosion resistance than fully recrystallized alloys. This would be related to the size and distribution of the second phase particles.

  • PDF

Studies on the Biological Active Substance produced by a Strain of Streptomyces sp. Part I. Isolation and Biological Characterization of the Substance (Streptomyces속 균주가 생성한 물질의 생물활성에 관한 연구 제 I보 생성물질의 분이및 그 생화학적성질)

  • 송방호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.2
    • /
    • pp.63-68
    • /
    • 1975
  • A biological active substance was isolated from the cultured medium of Streptomyces sp. and its biochemical characteristics were investigated. Isolation process of the substance was as follows; the pH of filterate of the cultured medium was adjusted to 3.0 with N-hydrochloric acid and saturated with sodium chloride, then chloroform was added to this filterate in one fifth portions and stirred vigorously. After extracting the active substance with chloroform in 3 stages, the chloroform layer combined and evaporatea after dehydrating with sodium sulfate. The substance was found to be to be toxic to various fresh water fishes; the lethal dose for an average size Pseudorasbora parva T. et. S. was 50ug per ml. In the acidic condition, the toxicity of the substance remained fora long time, while in the alkaline state, the toxicity was decreased very fast. This substance was found to be stable to organic solvents, but labile to heat treatment. The maximal revival time of Pseudorasbora parva T. et. S. was about 20 minutes in 25 ug/ml of the substance solution.

  • PDF

A Study on Image Analysis of Graphene Oxide Using Optical Microscopy (광학 현미경을 이용한 산화 그래핀 이미지 분석 조건에 관한 연구)

  • Lee, Yu-Jin;Kim, Na-Ri;Yoon, Sang-Su;Oh, Youngsuk;Lee, Jea Uk;Lee, Wonoh
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.183-189
    • /
    • 2014
  • Experimental considerations have been performed to obtain the clear optical microscopic images of graphene oxide which are useful to probe its quality and morphological information such as a shape, a size, and a thickness. In this study, we investigated the contrast enhancement of the optical images of graphene oxide after hydrazine vapor reduction on a Si substrate coated with a 300 nm-thick $SiO_2$ dielectric layer. Also, a green-filtered light source gave higher contrast images comparing to optical images under standard white light. Furthermore, it was found that a image channel separation technique can be an alternative to simply identify the morphological information of graphene oxide, where red, green, and blue color values are separated at each pixels of the optical image. The approaches performed in this study can be helpful to set up a simple and easy protocol for the morphological identification of graphene oxide using a conventional optical microscope instead of a scanning electron microscopy or an atomic force microscopy.

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.