• Title/Summary/Keyword: Site-specific assessment

Search Result 209, Processing Time 0.022 seconds

Land Use Optimization using Genetic Algorithms - Focused on Yangpyeong-eup - (유전 알고리즘을 적용한 토지이용 최적화 배분 연구 - 양평군 양평읍 일대를 대상으로 -)

  • Park, Yoonsun;Lee, Dongkun;Yoon, Eunjoo;Mo, Yongwon;Leem, Jihun
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.44-56
    • /
    • 2017
  • Sustainable development is important because the ultimate objective is efficient development combining the economic, social, and environmental aspects of urban conservation. Despite Korea's rapid urbanization and economic development, the distribution of resources is inefficient, and land-use is not an exception. Land use distribution is difficult, as it requires considering a variety of purposes, whose solutions lie in a multipurpose optimization process. In this study, Yangpyeong-eup, Yangpyeong, Gyeonggi-do, is selected, as the site has ecological balance, is well-preserved, and has the potential to support population increases. Further, we have used the genetic algorithm method, as it helps to evolve solutions for complex spatial problems such as planning and distribution of land use. This study applies change to the way of mutation. With four goals and restrictions of area, spatial objectives, minimizing land use conversion, ecological conservation, maximizing economic profit, restricting area to a specific land use, and setting a fixed area, we developed an optimal planning map. No urban areas at the site needed preservation and the high urban area growth rate coincided with the optimization of purpose and maximization of economic profit. When the minimum point of the fitness score is the convergence point, we found optimization occurred approximately at 1500 generations. The results of this study can support planning at Yangpyeong-eup.ausative relationship between the perception of improving odor regulation and odor acceptance.

Vascular Plant of the Construct-Reserved Site for Eco-Forest of Mt. Daeun in Yangsan-si, Gyeongsangnam-do (경남 양산 대운산 생태숲 조성예정지의 관속식물상 연구)

  • Kang, Meeyoung;Kim, Taewoon;Moon, Hyunshik
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.231-244
    • /
    • 2019
  • The purpose of this study is to offer the basic information for the rational management plan in construction and running of eco-forest by analyzing the vascular plant of the constructreserved site of eco-forest in Mt. Daeun, Yangsan-si, Gyeongsangnam-do. The vascular plants were 280 taxa; 75 families, 179 genera, 245 species, 3 subspecies, 28 varieties and 4 forma. The Korean endemic plants were 6 taxa including Pseudostellaria coreana, Stewartia pseudocamellia, Primula modesta var. hannasanensis and so forth. The rare plants were Juniperus chinensis var.sargentii, Prunus yedoensis, Primula modesta var. hannasanensis, Chionanthus retusus and Scopolia japonica. The naturalized plants were 14 taxa including Rumex acetosella, Lepidium apetalum, Trifolium repens, Oenothera biennis, Veronica persica and so forth. The invasive alien plants were Rumex acetosella and Ambrosia artemisiifolia. Specific plant species by floristic region were total 24 taxa; Prunus yedoensis and Primula modesta var. hannasanensis in class V, Juniperus chinensis var. sargentii and Acer pictum subsp. mono in class IV, 5 taxa including Dryopteris bissentiana, Scolopolia japonica and so forth in class III, Pseudostellaria coreana, Potentilla dickinsii and Chionanthus retusus in class II, 12 taxa including Acotinum jaluense, Clematis patens and so forth in class I.

Optimization of Contaminated Land Investigation based on Different Fitness-for-Purpose Criteria (조사목적별 기준에 부합하는 오염부지 조사방법의 최적화 방안에 관한 연구)

  • Jong-Chun Lee;Michael H. Ramsey
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.191-200
    • /
    • 2003
  • Investigations on the contaminated lands due to heavy metals from mining activities or hydrocarbons from oil spillage for example, should be planned based on specific fitness-for-purpose criteria(FFP criteria). A FFP criterion is site specific or varies with situation, based on which not only the data quality but also the decision quality can be determined. The limiting factors on the qualities can be, for example, the total budget for the investigation, regulatory guidance or expert's subjective fitness-for-purpose criterion. This paper deals with planning of investigation methods that can satisfy each suggested FFP criterion based on economic factors and the data quality. To this aim, a probabilistic loss function was applied to derive the cost effective investigation method that balances the measurement uncertainty, which estimates the degree of the data quality, with the decision quality. In addition, investigation planning methods when the objectives of investigations do not lie in the classification of the land but simply in producing the estimation of the mean concentration of the contaminant at the site(e.g. for the use in risk assessment), were also suggested. Furthermore, the efficient allocation of resources between sampling and analysis was also devised. These methods were applied to the two contaminated sites in the UK to test the validity of each method.

User-specific Agrometeorological Service to Local Farming Community: A Case Study (농가맞춤형 기상서비스 시범사업)

  • Yun, Jin I.;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.320-331
    • /
    • 2013
  • The National Center for AgroMeteorology (NCAM) has designed a risk management solution for individual farms threatened by the climate change and variability. The new service produces weather risk indices tailored to the crop species and phenology by using site-specific weather forecasts and analysis derived from digital products of the Korea Meteorological Administration (KMA). If the risk is high enough to cause any damage to the crops, agrometeorological warnings or watches are delivered to the growers' cellular phones with relevant countermeasures to help protect their crops against the potential damage. Core techniques such as scaling down of weather data to individual farm level and the crop specific risk assessment for operational service were developed and integrated into a cloud based service system. The system was employed and implemented in a rural catchment of 50 $km^2$ with diverse agricultural activities and 230 volunteer farmers are participating in this project to get the user-specific weather information from and to feed their evaluations back to NCAM. The experience obtained through this project will be useful in planning and developing the nation-wide early warning service in agricultural sector exposed to the climate and weather extremes under climate change and climate variability.

Risk Assessment of Groundwater and Soil in Sasang Industrial Area in Busan Metropolitan City (부산광역시 사상공단지역의 지하수 및 토양 위해성 평가)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Cheong, Jae-Yeol;Ryu, Sang-Min;Jang, Seong;Lee, Jeong-Hwan;Lee, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.295-306
    • /
    • 2009
  • The risk assessment of groundwater and soil in Sasang industrial complex in Busan Metropolitan City was carried out in order to estimate risks to human health and the environment. The carcinogenic risk (CR) of receptors to soil and air was not identified. However, the CRs for TCE and PCE were 6.7E-6 and 1.0E-5, respectively. Hazard quotient (HQ) and hazard index (HI) did not appear through air exposure pathways. Yet the HQ and HI of soil were 3.4E-5 and 5E-5, respectively, and lower than the critical value (1.0). On the contrary, HQ and HI with respect to groundwater were calculated as 0.7 (not hazardous) and 1.4 (hazardous). The constituent reduction factor (CRF) for TCE in the study area was determined as 2.5, and thus remediation work is demanded. As a result of sensitivity analysis for 18 exposure factors, eight exposure factors (life time of carcinogens, age, body weight, exposure duration, exposure frequency, dermal exposure frequency, water ingestion rate, and soil ingestion rate) varied with the variation of risk.

Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs

  • Heng, Junlin;Zheng, Kaifeng;Kaewunruen, Sakdirat;Zhu, Jin;Baniotopoulos, Charalampos
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.799-813
    • /
    • 2020
  • Fatigue cracks of rib-to-deck (RD) joints have been frequently observed in the orthotropic steel decks (OSD) using conventional U-ribs (CU). Thickened edge U-rib (TEU) is proposed to enhance the fatigue strength of RD joints, and its effectiveness has been proved through fatigue tests. In-depth full-scale tests are further carried out to investigate both the fatigue strength and fractography of RD joints. Based on the test result, the mean fatigue strength of TEU specimens is 21% and 17% higher than that of CU specimens in terms of nominal and hot spot stress, respectively. Meanwhile, the development of fatigue cracks has been measured using the strain gauges installed along the welded joint. It is found that such the crack remains almost in semi-elliptical shape during the initiation and propagation. For the further application of TEUs, the design curve under the specific survival rate is required for the RD joints using TEUs. Since the fatigue strength of welded joints is highly scattered, the design curves derived by using the limited test data only are not reliable enough to be used as the reference. On this ground, an experiment-numerical hybrid approach is employed. Basing on the fatigue test, a probabilistic assessment model has been established to predict the fatigue strength of RD joints. In the model, the randomness in material properties, initial flaws and local geometries has been taken into consideration. The multiple-site initiation and coalescence of fatigue cracks are also considered to improve the accuracy. Validation of the model has been rigorously conducted using the test data. By extending the validated model, large-scale databases of fatigue life could be generated in a short period. Through the regression analysis on the generated database, design curves of the RD joint have been derived under the 95% survival rate. As the result, FAT 85 and FAT 110 curves with the power index m of 2.89 are recommended in the fatigue evaluation on the RD joint using TEUs in terms of nominal stress and hot spot stress respectively. Meanwhile, FAT 70 and FAT 90 curves with m of 2.92 are suggested in the evaluation on the RD joint using CUs in terms of nominal stress and hot spot stress, respectively.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Derivation of Engineered Barrier System (EBS) Degradation Mechanism and Its Importance in the Early Phase of the Deep Geological Repository for High-Level Radioactive Waste (HLW) through Analysis on the Long-Term Evolution Characteristics in the Finnish Case (핀란드 고준위방폐물 심층처분장 장기진화 특성 분석을 통한 폐쇄 초기단계 공학적방벽 성능저하 메커니즘 및 중요도 도출)

  • Sukhoon Kim;Jeong-Hwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.725-736
    • /
    • 2023
  • The compliance of deep geological disposal facilities for high-level radioactive waste with safety objectives requires consideration of uncertainties owing to temporal changes in the disposal system. A comprehensive review and analysis of the characteristics of this evolution should be undertaken to identify the effects on multiple barriers and the biosphere. We analyzed the evolution of the buffer, backfill, plug, and closure regions during the early phase of the post-closure period as part of a long-term performance assessment for an operating license application for a deep geological repository in Finland. Degradation mechanisms generally expected in engineered barriers were considered, and long-term evolution features were examined for use in performance assessments. The importance of evolution features was classified into six categories based on the design of the Finnish case. Results are expected to be useful as a technical basis for performance and safety assessment in developing the Korean deep geological disposal system for high-level radioactive waste. However, for a more detailed review and evaluation of each feature, it is necessary to obtain data for the final disposal site and facility-specific design, and to assess its impact in advance.

Assessment of Inhalation Dose Sensitivity by Physicochemical Properties of Airborne Particulates Containing Naturally Occurring Radioactive Materials (천연방사성물질을 함유한 공기 중 부유입자 흡입 시 입자의 물리화학적 특성에 따른 호흡방사선량 민감도 평가)

  • Kim, Si Young;Choi, Cheol Kyu;Park, Il;Kim, Yong Geon;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.216-222
    • /
    • 2015
  • Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of $0.01{\mu}m$ sized particulates were higher than doses due to $100{\mu}m$ sized particulates by factors of about 100 and 50 for $^{238}U$ and $^{230}Th$, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of $11g{\cdot}cm^{-3}$ and $0.7g{\cdot}cm^{-3}$ resulted in dose difference by about 60 %. For $^{238}U$, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of $^{238}U$ was about 9 times higher than dose for absorption F. For $^{230}Th$, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of $^{230}Th$ was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and conditions and use the site specific particulate properties to accurately access radiation dose to workers at NORM processing facilities.

Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture (농업기상 조기경보체계: 기후변화-기상이변 대응서비스의 출발점)

  • Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.403-417
    • /
    • 2014
  • Increased frequency of climate extremes is another face of climate change confronted by humans, resulting in catastrophic losses in agriculture. While climate extremes take place on many scales, impacts are experienced locally and mitigation tools are a function of local conditions. To address this, agrometeorological early warning systems must be place and location based, incorporating the climate, crop and land attributes at the appropriate scale. Existing services often lack site-specific information on adverse weather and countermeasures relevant to farming activities. Warnings on chronic long term effects of adverse weather or combined effects of two or more weather elements are seldom provided, either. This lecture discusses a field-specific early warning system implemented on a catchment scale agrometeorological service, by which volunteer farmers are provided with face-to-face disaster warnings along with relevant countermeasures. The products are based on core techniques such as scaling down of weather information to a field level and the crop specific risk assessment. Likelihood of a disaster is evaluated by the relative position of current risk on the standardized normal distribution from climatological normal year prepared for 840 catchments in South Korea. A validation study has begun with a 4-year plan for implementing an operational service in Seomjin River Basin, which accommodates over 60,000 farms and orchards. Diverse experiences obtained through this study will certainly be useful in planning and developing the nation-wide disaster early warning system for agricultural sector.