• Title/Summary/Keyword: Site-directed Mutagenesis

Search Result 263, Processing Time 0.027 seconds

Activity of Human Dihydrolipoamide Dehydrogenase Is Reduced by Mutation at Threonine-44 of FAD-binding Region to Valine

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.437-441
    • /
    • 2002
  • Dihydrolipoamide dehydrogenase (E3) is a member of the pyridine nucleotide-disulfide oxidoreductase family. Thr residues are highly conserved. They are at the active site disulfide-bond regions of most E3s and other oxidoreductases,. The crystal structure of Azotobacter vinelandii E3 suggests that the hydroxyl group of Thr that are involved in the FAD binding interact with the adenosine phosphate of FAD. However, several prokaryotic E3s have Val instead of Thr. To investigate the meaning and importance of the Thr conservation in many E3s, the corresponding residue, Thr-44, in human E3 was substituted to Val by site-directed mutagenesis. The mutant’s E3 activity showed about a 2.2-fold decrease. Its UV-visible and fluorescence spectra indicated that the mutant might have a slightly different microenvironment at the FAD-binding region.

Identification of Essential Amino acid Residues in Valine Dehydrogenase from Streptomyces albus

  • Hyun Chang-Gu;Kim Sang-Suk;Suh Joo-Won
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.50-53
    • /
    • 2006
  • Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase(ValDH) were highly conserved in the corresponding region of $NAD(P)^+$-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.

Inositol(1,4,5)triphosphate 3-Kinase의 유전자 재조합과 CCL39 Hamster Lung Fibroblasts에서 발현

  • 김재웅;최관용
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • IPSKCDNA gene(1.8 kbp) encoding rat brain IP3K enzyme contained Not I restric site in open reading frame. The Not I sequence, GCGGCCGC, was converted to GCAGCCGC by site-directed mutagenesis. The mutated IP3KcDNA was digested with EcoR I and ligated with EcoR I-restricted psp72·Not2 vector. The resulting psp72 · Not2-IP3KCDNA was digested with the Not I restriction enzyme and then subcloned into the Not I -digested PZIP · NeoSV(X) mammalian expression vector. The PZIP · NeoSV(X) -IPSKCDNA was transfected into CCL39 hamster lung fibroblast cells. The efficiency of the expressed IPSKCDNA gene was significantly higher than expected generally, not only a mean 5-fold increase in the amount of enzyme, but also 16-fold increase in enzyme activity from tractsfected CCL39 cells by the method of Western blot using anti-lP3K antibodies. Both distribution of IPSK in various rat tissues and biochemical properties were discussed.

  • PDF

Effect of Polar Amino Acid Residue Substitution by Site-Directed Mutagenesis in the N-terminal Domain of Pseudomonas sp. Phytase on Enzyme Activity

  • Lee, Ga Hye;Jang, Won Je;Kim, Soyeong;Kim, Yoonha;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1104-1107
    • /
    • 2020
  • The N-terminal domain of the Pseudomonas sp. FB15 phytase increases low-temperature activity and catalytic efficiency. In this study, the 3D structure of the N-terminal domain was predicted and substitutions for the amino acid residues of the region assumed to be the active site were made. The activity of mutants, in which alanine (A) was substituted for the original residue, was investigated at various temperatures and pH values. Significant differences in enzymatic activity were observed only in mutant E263A, suggesting that the amino acid residue at position 263 of the N-terminal domain is important in enzyme activity.

Identification of Amino Acid Residues in the Carboxyl Terminus Required for Malonate-Responsive Transcriptional Regulation of MatR in Rhizobium leguminosarum bv. trifolii

  • Lee, Hwan-Young;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.305-309
    • /
    • 2001
  • MatR in Rhizobium trifolii is a malonate-responsive transcription factor that regulates the expression of genes, matABC, enabling decarboxylation of malonyl-CoA into acetyl-CoA, synthesis of malonyl-CoA from malonate and CoA, and malonate transport. According to an analysis of the amino acid sequence homology, MatR belongs to the GntR family The proteins of this family have two-domain folds, the N-terminal helix-turn-helix DNA-binding domain and the C-terminal ligand-binding domain. In order to End the malonate binding site and amino acid residues that interact with RNA polymerase, a site-directed mutagenesis was performed. Analysis of the mutant MatR suggests that Arg-160 might be involved in malonate binding, whereas Arg-102 and Arg-174 are critical for the repression activity by interacting with RNA polymerase.

  • PDF

1269S mutation in horse liver alcohol dehydrogenase S isoenzyme and its reactivity for steroids and retinoids

  • Ryu, Ji-Won;Lee, Kang-Man
    • Archives of Pharmacal Research
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 1997
  • Ile-269 in horse liver alcohol dehydrogenase isoenzyme S(HLADH-S) was mutated to serine by phosphorothioate-based site-directed mutagenesis in order to study the role of the residue in coenzyme binding. The specific activity of the mutant(1269S) enzyme to ethanol was increased 49-fold. All turnover numbers of 1269S enzyme toward 9 primary alcohols were increased. The mutant enzyme showed 3.6, 4.6, 11.6-fold higher catalytic efficiency for $5{\beta}$-androstane-3, 17-dione, $5{\beta}$-cholanic acid-3-one and retinal than wild-type, respectively. The reaction mechanism of 1269S enzyme was ordered bi bi as wild-type's. These results indicate that the hydrophobic interaction of Ile-269 residue with coenzyme plays an important role in dissociation of coenzyme from enzyme-coenzyme complex, which has been known as the rate limiting step of ADH reaction.

  • PDF

Site-Directed Mutation Effect of the Symmetry Region at the mRNA 5'-end of Escherichia coli aeg-46.5 Gene

  • Ahn, Ju-Hyuk;Choe, Mu-Hyeon
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.92-97
    • /
    • 1996
  • The age-46.5 gene of Escherichia coli is induced by nitrate ion and regulated by Fnr, NarL, and NarP during anaerobic growth. aeg-46.5::lacZ fusion gene shows its maximum expression in narL host after two hours of aerobic to anaerobic switch in M9-Glc-nitrate medium. Fnr and NarP act as positive regulators, and NarL acts as a negative regulator. The control region of the aeg-46.5 was identified and the binding sites of regulator proteins have been predicted (Reznikoff and Choe (1993)). It has two symmetry regions. One is located at -52~-37 bp from the anaerobic mRNA 5'-end, which is the binding site of NarL and NarP. The other is located at +37~+56 bp from the 5'-end of mRNA. In this study, the downstream symmetry region from the mRNA 5'-end was investigated by site-directed mutagenesis. The destruction of the symmetry region increases the expression level of aeg-46.5. We propose that the symmetry region interferes with the expression of aeg-46.5 possibly by forming a stem-and-loop structure.

  • PDF