• Title/Summary/Keyword: Site formation processes

Search Result 38, Processing Time 0.028 seconds

Theoretical studies on the stabilization and diffusion behaviors of helium impurities in 6H-SiC by DFT calculations

  • Obaid Obaidullah;RuiXuan Zhao;XiangCao Li;ChuBin Wan;TingTing Sui;Xin Ju
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2879-2888
    • /
    • 2023
  • In fusion environments, large scales of helium (He) atoms are produced by a radical transformation along with structural damage in structural materials, resulting in material swelling and degradation of physical properties. To understand its irradiation effects, this paper investigates the stability, electronic structure, energetics, charge density distribution, PDOS and TDOS, and diffusion processes of He impurities in 6HSiC materials. The formation energy indicates that a stable, favorable position for interstitial He is the HR site with the lowest energy of 2.40 eV. In terms of vacancy, the He atom initially prefers to substitute at pre-existing Si vacancy than C vacancy due to lower substitution energy. The minimum energy paths (MEPs) with migration energy barriers are also calculated for He impurity by interstitial and vacancy-mediated diffusion. Based on its calculated energy barriers, the most possible diffusion path includes the exchange of interstitial and vacancy sites with effective migration energies ranging from 0.101 eV to 1.0 eV. Our calculation provides a better understanding of the stabilization and diffusion behaviors of He impurities in 6H-SiC materials.

Evaluation and Comparison of Weldabilities with Various Welding Processes on TMCP Steels (TMCP강의 용접 공정별 입열량에 따른 용접부 물성 평가 및 비교)

  • Choi, Chul Young;Ji, Chang Wook;Kim, Hyoung Chan;Nam, Dae-Geun;Kim, Joungdon;Kim, Soon Kook;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.6-14
    • /
    • 2014
  • This paper has an aim to evaluate microstructure and fracture toughness of TMCP steel weldment applied for off-shore wind tower with the focus on the effect of heat input on the weldment with various welding processes; FCAW(13kJ/cm and 30kJ/cm), SAW(62kJ/cm), and EGW(177kJ/cm). Based on experimental results developed from this study, it was found that the impact toughness of top side for TMCP steel weldments with heat input up to 62 kJ/cm satisfied the required minimum value except the EGW(177kJ/cm). The heat input and microstructure are the main factors of impact toughness. The heat input of 13kJ/cm on back side with low heat input increased the amount of grain boundary ferrite which has low impact toughness, and heat input of 177kJ/cm on top side is significant enough to produce the austenite grain growth. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by OM and EDS. As the heat input increased, the inclusions also grew and a nucleation site decreased. The size of nonmetallic inclusions and the crack width was nearly similar, therefore the inclusions were related with the crack propagation.

Uranium-Series Growth Rates of Two Manganese Nodules from the KODOS-89 site, Clarion-Clipperton Fracture Zones of the Central Equatorial Pacific (우라늄 계열 기법으로 측정된 클라리온-클리퍼톤 균열대 KODOS-89 지역 망간단괴 2개의 성장속도)

  • MOON, DEOK SOO;KIM, KEE HYUN;KANG, JUNG KEUK
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.248-257
    • /
    • 1994
  • Growth rates of two manganese nodules collected in the Korea Deep Ocean Study (KODOS-89) site in the Clarion-Clipperton Fracture Zones in the central Equatorial Pacific have been estimated by employing uranium-series disequilibrium techniques to investigate the geochemical processes leading to the formation of deep-sea nodules. the growth rates estimated from the profiles of excess /SUP 230/Th activities and ratios of excess /SUP 230/Th to /SUP 232/Th to /SUP 232/Th are in the order of a few millimeters per million years. Growth rates at bottom-side of nodules are 2-3 times faster than those at top-sides. Diagenetic supply of manganese could explain the faster growth at the bottom-side of nodules.

  • PDF

Fragipan Formation within Closed Depressions in Southern Wisconsin, United States (미국 위스콘신 남부지방의 소규모 저습지에 나타나는 이쇄반층(Fragipan)의 형성과정에 관한 연구)

  • Park S.J.;Almond P.;McSweeney K.;Lowery B.
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.150-167
    • /
    • 2006
  • This study was conducted to determine the pedogenesis of dense subsurface horizons (denoted either Bx or Bd) observed within closed depressions and in toeslope positions at loess-covered glacial tillplains in southern Wisconsin. Some of these dense subsurface horizons, especially those occurring within depressions, show a close morphological resemblance to fragipans elsewhere, even though the existence of fragipans has not been previously reported in southern Wisconsin. The spatial occurrence of fragipans was first examined over the landscape to characterize general soil-landscape relationships. Detailed physico-chemical and micromorphological analyses were followed to investigate the development of fragipans within a closed depression along a catenary sequence. The formation of fragipans at the study site is a result of sequential processes of physical ripening and accumulation of colloidal materials. A very coarse prismatic structure with a closely packed soil matrix was formed via physical ripening processes of loess deposited in small glacial lakes and floodplains that existed soon after the retreat of the last glacier. The physically formed dense horizons became hardened by the accumulation of colloidal materials, notably amorphous Si. The accumulation intensity of amorphous Si varies with mass balance relationships, which are governed by topography and local drainage conditions. Well-developed Bx horizons evolve at closed depressions where net accumulation of amorphous Si occurs, but the collapsed layers remain as Bd horizons at other locations where soluble Si has continuously been removed downslope or downvalley. Hydromorphic processes caused by the presence of fragipans are degrading upper parts of the prisms, resulting in the formation of an eluvial fragic horizon (Ex).

The Role of Cartilage Canals in Osteogenesis and Growth of the Vertebrae in the Human Fetuses (인태아 척추 골화과정에서 연골관의 역할)

  • Jung, Sung-Taek;Nam, Kwang-Il;Kim, Baik-Yoon;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.287-305
    • /
    • 2001
  • To investigate a role of cartilage canals in osteogenesis and growth of the vertebrae, in human fetuses ranging from 50 mm to 260 mm crown rump length were studied by electron microscopy. The initial appearance of cartilage canals of the vertebral body was observed at 60 mm fetus. In 80 mm fetus, primary ossification center in the vertebral body was first noted. The vertebral body showed calcified chondrocytes surrounded by a tone of hypertrophied chondrocytes and deep canals which terminated in calcified matrix. Most hypertrophied chondrocytes in the centrum showed in various stage of degeneration in disorderly arrangement. At the blind end of deep canal, osteogenic cells, osteoblasts and chondroclasts were observed. Resorption of unmineralized cartilage septa was undertaken by perivascular cells within cartilage canals. The ruffled border of the chondroclast was restricted to resorption site of calcified cartilagenous matrix. The periosteal bone formation was followed by the appearance of primary center of the centrum at 120 mm fetus. The osteoblasts of the perichondrium started to lay down a thin membranous bony lamella on the outer surface of the osseous trabeculae of the centrum. The processes of bone formation in the vertebral bodies were found to possess morphological similarities to that occurring at secondary center of the epiphysis of a long bone. These results indicate that the connective tissue cells within the cartilage canals proliferate and differentiate into osteoblasts at the site of endochondral ossification of the vertebrae.

  • PDF

Analysis on Seismic Interpretation for Overseas Large-scale CO2 Storage Considering Geological History Related to Plate Tectonics (판구조론적 역사를 고려한 해외 대규모 이산화탄소 지중저장소 탄성파 해석 결과 분석)

  • Young-Ju Lee;Ha-Yeon Kang;Yun-Gon Park;Ah-Reum Han;Jae-Young Lee;Ju-Won Oh
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.1-22
    • /
    • 2024
  • Carbon dioxide capture utilization and storage (CCUS) techniques have received significant global attention as they are part of efforts to achieve carbon neutrality by 2050. Large-scale carbon dioxide capture and storage (CCS) projects are being actively pursued in North America, the North Sea, the Middle East, and Oceania. Considering the current situation in South Korea, identifying large-scale CCS sites that can secure an annual domestic carbon storage capacity of 30 million tons by 2050 is crucial Therefore, this study analyzed the formation process and geological characteristics of overseas large-scale CCS projects in terms of plate tectonics. We utilized the GPlates program to interpret the formation processes of large-scale CCS projects in North America, the North Sea, Middle East, and Oceania from the perspective of plate tectonics. Additionally, we investigated the geological structure of the CO2 storage layer and interpreted seismic imaging results obtained from each CCS site. This study will help identify a domestic large-scale CCS site.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF

$^{14}C$ Dates from Late Paleolithic Sites and Chronological Implications in Korea (한국의 구석기유적의 탄소연대측정치와 편년문제)

  • 배기동
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.63-73
    • /
    • 2001
  • In total, 29 $^{14}C$ dates were obtained from Paleolithic sites in the Korean peninsula. If not the dates from the Sorori peat layers, the number will be less than 20. Low boundary of Upper Paleolithic could be estimated by some early of the dates from Blade stone industries. Couple of $^{14}C$ dates indicate that beginning of Upper Paleolithic industries could approach to 40 K BP, but it is premature to establish fine chronology of Upper Paleolithic. Some of the $^{14}C$ dates of microlithic industries probably represent too earlier age than generally thought. Tentatively, the beginning of microlithic industries may go back to an age of slightly older than 20 K BP, as indicated in Janghungri, Sokchangni, Noeundong etc. The obtained $^{14}C$ dates at present are very important for construction of Paleolithic chronology. but it is necessary to accumulate for more $^{14}C$ dates in future along with results from other dating techniques and to reconstruct site formation processes for obtaining objective age of stone industries.

  • PDF

Ser1778 of 53BP1 Plays a Role in DNA Double-strand Break Repairs

  • Lee, Jung-Hee;Cheong, Hyang-Min;Kang, Mi-Young;Kim, Sang-Young;Kang, Yoon-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • 53BP1 is an important genome stability regulator, which protects cells against double-strand breaks. Following DNA damage, 53BP1 is rapidly recruited to sites of DNA breakage, along with other DNA damage response proteins, including ${\gamma}$-H2AX, MDC1, and BRCA1. The recruitment of 53BP1 requires a tandem Tudor fold which associates with methylated histones H3 and H4. It has already been determined that the majority of DNA damage response proteins are phosphorylated by ATM and/or ATR after DNA damage, and then recruited to the break sites. 53BP1 is also phosphorylated at several sites, like other proteins after DNA damage, but this phosphorylation is not critically relevant to recruitment or repair processes. In this study, we evaluated the functions of phosphor-53BP1 and the role of the BRCT domain of 53BP1 in DNA repair. From our data, we were able to detect differences in the phosphorylation patterns in Ser25 and Ser1778 of 53BP1 after neocarzinostatin-induced DNA damage. Furthermore, the foci formation patterns in both phosphorylation sites of 53BP1 also evidenced sizeable differences following DNA damage. From our results, we concluded that each phosphoryaltion site of 53BP1 performs different roles, and Ser1778 is more important than Ser25 in the process of DNA repair.

Geomorphological Development of Embayment Area at the estuary of Nakdong River (낙동강 하구 만입지의 지형발달)

  • Yang, Jae-Hyuk;Cho, Kook-Rai
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.6
    • /
    • pp.649-665
    • /
    • 2011
  • Estuary of River Nakdong(in south-eastern coast of Korean Peninsula) is the most representative site of delta in Korea. This study is to elucidate morpho-structural background associated with the embayment area and sedimentation processes, having allowed development of the delta. In this area, Great morphological trait of the embayment area had been formulated by differential erosion exploiting regional fracture system(NNE-SSW, NNW-SSE, E-W,...) of tectonic origin. For this reason, outline of the embayment basin shows quadrangular plan, and ridges and dissected valleys of neighbouring mountains draw frequently morphological lineament pattern. At the last glacial age when delta deposit had not yet filled the actual embayment basin of the Nakdong, mechanical weathering(frost shattering) and mass-movement processes had provided detritus materials composed of blocks, boulders on bottom the basin. With the postglacial transgression in the Holocene, the basin had been submerged, then began to be filled with fluvio-marine deposits from Kimhae-Yangsan area toward actual estuarine zone, so that Nakdong delta have been formed. Analysis and synthesis of from hundreds of boring data of the delta area reveal that progression of delta formation have been accompanied with the development of barrier islands. If the barrier islands had grown as forming a plural row, then their intervals have posteriorly filled with another fluvio-marine deposits. Besides, it shows that delta deposits are essentially alluvial. However, at the periphery of the delta, intervention of fine marine deposits is frequently found.

  • PDF