• Title/Summary/Keyword: Site Planning Optimization

Search Result 34, Processing Time 0.023 seconds

Optimizing Laser Scanner Selection and Installation through 3D Simulation-Based Planning - Focusing on Displacement Measurements of Retaining Wall Structures in Small-scale Buildings -

  • Lee, Gil-yong;Kim, Jun-Sang;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.68-82
    • /
    • 2024
  • The planning stage of laser scanning is crucial for acquiring high-quality 3D source data. It involves assessing the target space's environment and formulating an effective measurement strategy. However, existing practices often overlook on-site conditions, with decisions on scanner deployment and scanning locations relying heavily on the operators' experience. This approach has resulted in frequent modifications to scanning locations and diminished 3D data quality. Previous research has explored the selection of optimal scanner locations and conducted preliminary reviews through simulation, but these methods have significant drawbacks. They fail to consider scanner inaccuracies, do not support the use of multiple scanners, rely on less accurate 2D drawings, and require specialized knowledge in 3D modeling and programming. This study introduces an optimization technique for laser scanning planning using 3D simulation to address these issues. By evaluating the accuracy of scan data from various laser scanners and their positioning for scanning a retaining wall structure in a small-scale building, this method aids in refining the laser scanning plan. It enhances the decision-making process for end-users by ensuring data quality and reducing the need for plan adjustments during the planning phase.

Optimization of real-time path finding for material handling of finishing work considering the logistics flow (물류량을 고려한 마감공사 자재운반의 실시간 경로탐색 최적화 연구)

  • Kim, Wansoub;Lee, Dongmin;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.170-171
    • /
    • 2015
  • Resource procurement and material handling are considered as a significant part of construction project especially in large or tall building construction site. There are multiple variables that must be considered in a construction site during finishing work such as movement of materials, equipments, and workers. Therefore, it is difficult for construction workers to find the material handling path solely by intuition. The aim of this study is to propose a real-time path finding model suitable for complicated logistics flow in the field. The model explores the optimal transport path of finishing material with its basis on optimization algorithm, and it determines the direction of the Smart Sign. The proposed model is expected to be utilized for planning of efficient finishing material handling.

  • PDF

Land Use Optimization using Genetic Algorithms - Focused on Yangpyeong-eup - (유전 알고리즘을 적용한 토지이용 최적화 배분 연구 - 양평군 양평읍 일대를 대상으로 -)

  • Park, Yoonsun;Lee, Dongkun;Yoon, Eunjoo;Mo, Yongwon;Leem, Jihun
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.44-56
    • /
    • 2017
  • Sustainable development is important because the ultimate objective is efficient development combining the economic, social, and environmental aspects of urban conservation. Despite Korea's rapid urbanization and economic development, the distribution of resources is inefficient, and land-use is not an exception. Land use distribution is difficult, as it requires considering a variety of purposes, whose solutions lie in a multipurpose optimization process. In this study, Yangpyeong-eup, Yangpyeong, Gyeonggi-do, is selected, as the site has ecological balance, is well-preserved, and has the potential to support population increases. Further, we have used the genetic algorithm method, as it helps to evolve solutions for complex spatial problems such as planning and distribution of land use. This study applies change to the way of mutation. With four goals and restrictions of area, spatial objectives, minimizing land use conversion, ecological conservation, maximizing economic profit, restricting area to a specific land use, and setting a fixed area, we developed an optimal planning map. No urban areas at the site needed preservation and the high urban area growth rate coincided with the optimization of purpose and maximization of economic profit. When the minimum point of the fitness score is the convergence point, we found optimization occurred approximately at 1500 generations. The results of this study can support planning at Yangpyeong-eup.ausative relationship between the perception of improving odor regulation and odor acceptance.

Implementation and Analysis of Railway Design Model using ei-Rail with Joong-Ang and Seo-Hae Lines (ei-Rail을 활용한 노선설계 모형의 적용 및 중앙선/서해안선 사례분석)

  • Shin, Youngho;Kim, Jeong Hyun;Oh, Jitaek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.407-415
    • /
    • 2015
  • The railway route and alignment planning have been executed with a limited number of alternatives based on the site pre-survey and the topographic map. This study developed an intelligent railway alignment planning program (ei-Rail) which can derive all the considerable design alternatives and provide the data for the alternative evaluation such as constructions cost, operation cost, and etc. According to the comparisons with prevailing planned railway projects, the time and cost for planning can be reduced as well as the construction costs. This program may contribute to the development of railway industry by reducing the time and cost for planning as well as the total project cost.

Traditional Software Development for WLAN Propagation Model

  • Ibrahim Anwar Hassan;Ismail Mahamod;Jumari Kasmiran;Kiong Tiong Sieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.123-128
    • /
    • 2007
  • SPWPM traditional software development is surveyed and essential problems are investigated on the basis of system wireless link considerations. This paper presents the current state software planning tools for wireless LAN link optimization. The software directory is based on combination of MatLab and MapInfo software and measurement which gives the best grouping parameters to build up the software development. Among the requirements assumed, the WLAN site selections must be Line-of-sight (LOS) or near line of sight (NLOS) field strength prediction for either point to point or point to multi points. The results obtainable the out put of the program include two-dimensional (2D) and three dimensional (3D) plots for creating the link; design parameters through GUI representing the height and location for each antenna is depending on K-factor of the area and transmit antenna location.

Research on Facility Layout of Prefabricated Building Construction Site

  • Yang, Zhehui;Lu, Ying;Zhang, Xing;Sun, Mingkang;Shi, Yufeng
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.42-51
    • /
    • 2017
  • Due to the high degree of mechanization and the good environmental benefits, the prefabricated buildings are being promoted in China. The construction site layout of the prefabricated buildings has important influence on its safety benefit. However, few scholars have studied the safety problem on it. Firstly, in order to give a follow-up study foreshadowing the characteristics of prefabricated buildings are analyzed, the research assumptions are given and three types of safety buffers are established. And then a mult-objective model for the prefabricated buildings site layout is presented: taking into account the limits of noise, the coverage of the tower crane and the possibility of exceeding boundaries and overlapping, the constraints are and designed established respectively; Based on the improved System Layout Planning (SLP) method, the efficiency\cost\safety interaction matrices among the facilities are also founded for objective function. For the sake of convenience, a hypothetical facility layout case of the prefabricated building is used, the optimal solution of that is obtained in MATLAB with particle swarm algorithm (PSO), which proves the effectiveness of the model presented in this paper.

  • PDF

A Layout Planning Optimization Model for Finishing Work (건축물 마감공사 자재 배치 최적화 모델)

  • Park, Moon-Seo;Yang, Young-Jun;Lee, Hyun-Soo;Han, Sang-Won;Ji, Sae-Hyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.43-52
    • /
    • 2011
  • Unnecessary transportation of resources are one of the major causes that adversely affect construction site work productivity. Therefore, layout related studies have been conducted with efforts to develop management technologies and techniques to minimize the resource transportation made at site-level. However, although the necessity for floor-level layout planning studies has been increasing as buildings have become larger and floors have become more complicated, studies to optimize the transportation of materials inside buildings are currently not being actively conducted. Therefore, in this study, a model was developed using genetic algorithms(GA) that will enable the optimization of the locations of finishing materials on the work-floor. With the established model, the arrangement of diverse materials on complicated floors can be planned and the optimized material layout planning derived from the model can minimize the total material transportation time spent by laborers during their working day. In addition, to calculate travel distances between work sites and materials realistically, the concept of actual travel distances was applied. To identify the applicability of the developed model and compare it with existing methodologies and analyze it, the model was applied to actual high-rise residential complexes.

Optimization of Processing Conditions According to Run-out During End-mill Round Machining (엔드밀 원형 가공 시 런아웃에 따른 가공조건 최적화)

  • Lee, Ha-Neul;Choi, Hee-Kwan;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2021
  • With the increased utilization of CAM programs, end-mill processing is most commonly used for machining and metal processing. In particular, hole or shaft machining has high assembly precision, which inevitably leads to high utilization of end mills. However, the analysis of quality characteristics according to the process conditions of end mills is not performed systematically at the site, causing poor quality and productivity. The most influential factor of quality is the runout of the end mill. In this paper, the number of turns of the end mill, number of tool blades, cutting direction, and artificial runout volume were determined to identify the correlation between the epicenter, cylindricality, and surface roughness. Two types of end mills, three levels of runout, three levels of rotational speed, and two cutting directions were considered and 36 rounds of hole processing were conducted. For the analysis of shape characteristics according to the set process variables, the experimental planning method was applied to the measured specimen and the processing characteristics were analyzed according to the runout of the end mill through correlation analysis.

A Model for Optimization Process of Asbestos Dismantling Work Using Simulation (시뮬레이션을 이용한 석면 해체공사의 최적화 공정계획 모델)

  • Cho, Hyeong-Jun;Noh, Jae-Yun;Lee, Ho-Hyeon;Lee, Su-Min;Han, Seung-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.17-18
    • /
    • 2022
  • In Korea, asbestos removal has been actively carried out nationwide since 2015 when asbestos was completely banned as a first-class carcinogen. Since scattering dust generated in the process of removing asbestos causes fatal diseases such as asbestos lung disease and lung cancer, concerns are growing over the safety of construction workers and building users undergoing dismantling. For this reason, regulations on asbestos sites have been strengthened and prior studies on safety and risk assessment have been conducted, but research on actual site data collection and process planning is insufficient even though safety is reduced due to delay in site construction period. Therefore, it is necessary to analyze the work and delay factors of the asbestos dismantling process and develop an optimized process plan model for workers. This study is an initial step to develop an optimized process plan model that considers the safety and productivity of asbestos dismantling work, and aims to help establish an optimized process plan for asbestos dismantling process using website clone simulation.

  • PDF

Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM) (DSM을 활용한 타워크레인 양중계획 최적화에 관한 연구)

  • Kim, Seungho;Kim, Sangyong;Jean, Jihoon;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2016
  • Tower crane (T/C) is one of the major equipment that is highly demanded in construction projects. Especially, most high-rise building projects require T/C to perform lifting and hoisting activities of materials. Therefore, lifting plan of T/C needs to reduce construction duration and cost. However, most lifting plan of the T/C in construction sites has still performed depending on experience and intuition of the site manager without systematic process of rational work. Dependency structure matrix (DSM) is useful tool in planning the activity sequences and managing information exchanges unlike other existing tools. To improve lifting plan of T/C efficiently, this study presents a framework for the scheduling T/C using DSM through the case study in real world construction site. The results of case study showed that the scheduling T/C using DSM is useful to optimize the T/C lifting plan in terms of easiness, specially in the typical floor cycle lifting planning.