• 제목/요약/키워드: Sirt1

검색결과 128건 처리시간 0.027초

Anti-obesity Activity of Ethanol Extract from Bitter Melon in Mice Fed High-Fat Diet

  • Yoon, Nal Ae;Park, Juyeong;Jeong, Joo Yeon;Rashidova, Nilufar;Ryu, Jinhyun;Roh, Gu Seob;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Lee, Dong Hoon;Kang, Sang Soo
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권2호
    • /
    • pp.129-138
    • /
    • 2019
  • In many cases, obesity is associated with metabolic disorders. Recently, natural compounds that may be beneficial for improving obesity have received increasing attention. Bitter melon has received attention as a diabetes treatment. $NAD^+$-dependent deacetylase (Sirtuin 1, SIRT1) has emerged as a novel therapeutic target for metabolic diseases. In this study, ethanol extract of bitter melon (BME) suppressed adipocyte differentiation and significantly increased the expression of SIRT1 in fully differentiated 3T3-L1 cells. Moreover, it enhanced the activation of AMP-activated protein kinase (AMPK). In high-fat diet (HFD)-fed induced-obesity mice, BME suppressed HFD-induced increases in body weight and white adipose tissue (WAT) weight. BME also increased the expression of SIRT1 and suppressed peroxisome proliferator-activated receptor and sterol regulatory element binding protein 1 expressions of WAT from HFD-fed mice. These findings suggest that BME prevents obesity by activating the SIRT1 and AMPK pathway and that it may be a useful dietary supplement for preventing obesity.

Ginsenoside Rb3 ameliorates podocyte injury under hyperlipidemic conditions via PPARδ- or SIRT6-mediated suppression of inflammation and oxidative stress

  • Heeseung Oh;Wonjun Cho;Seung Yeon Park;A.M. Abd El-Aty;Ji Hoon Jeong;Tae Woo Jung
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.400-407
    • /
    • 2023
  • Background: Rb3 is a ginsenoside with anti-inflammatory properties in many cell types and has been reported to attenuate inflammation-related metabolic diseases such as insulin resistance, nonalcoholic fatty liver disease, and cardiovascular disease. However, the effect of Rb3 on podocyte apoptosis under hyperlipidemic conditions, which contributes to the development of obesity-mediated renal disease, remains unclear. In the current study, we aimed to investigate the effect of Rb3 on podocyte apoptosis in the presence of palmitate and explore its underlying molecular mechanisms. Methods: Human podocytes (CIHP-1 cells) were exposed to Rb3 in the presence of palmitate as a model of hyperlipidemia. Cell viability was assessed by MTT assay. The effects of Rb3 on the expression of various proteins were analyzed by Western blotting. Apoptosis levels were determined by MTT assay, caspase 3 activity assay, and cleaved caspase 3 expression. Results: We found that Rb3 treatment alleviated the impairment of cell viability and increased caspase 3 activity as well as inflammatory markers in palmitate-treated podocytes. Treatment with Rb3 dosedependently increased PPARδ and SIRT6 expression. Knockdown of PPARδ or SIRT6 reduced the effects of Rb3 on apoptosis as well as inflammation and oxidative stress in cultured podocytes. Conclusions: The current results suggest that Rb3 alleviates inflammation and oxidative stress via PPARδ-or SIRT6-mediated signaling, thereby attenuating apoptosis in podocytes in the presence of palmitate. The present study provides Rb3 as an effective strategy for treating obesity-mediated renal injury.

Effects of the Fraction of Sambucus Williamsii, NNMBS 246, on Osteoblastic Differentiation

  • Kang, Soon-Il;Park, Jaesuh;Kwon, Il-Keun;Kim, Eun-Cheol
    • 셀메드
    • /
    • 제8권3호
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone formation. The purpose of this study was to examine the effects of NNMBS 246 osteoblastic differentiation with associated signaling pathways. NNMBS 246 markedly increased alkaline phosphatase (ALP) activity and calcium nodule formation. Stimulation with NNMBS 246 not only increased the differentiation markers (ALP, OPN, OCN) level and transcription markers (RUNX2, Osterix) mRNA expression but also upregulated the ECM molecules and OPG mRNA expression. Treatments of NNMBS 246 downregulated MMPs (MMP-1, MMP-2, MMP-9), but RANKL mRNA expression. Furthermore, NNMBS 246 activated osteoblastic differentiation markers and formed calcium nodules in human periodontal ligament cells (hPDLCs) and cementoblast cells. NNMBS 246 induced phosphorylation of MAPKs, Akt, nuclear p65 and IkB-${\alpha}$. BMP-2/Smad and ${\beta}$-catenin signaling pathways were activated by NNMBS 246. Sirtinol (SIRT1 inhibitor) inhibited NNMBS 246-induced osteoblastic differentiation markers mRNA expression. These results suggested that NNMBS 246 has the potential to enhance osteoblastogenesis probably through the activation of BMP/Smad and ${\beta}$-catenin signal pathways, and SIRT1 plays as critical mediator in bone anabolic effect of NNMBS 246.

자하거약침액과 산삼약침액의 C2C12 근아세포에서의 AMPK/SIRT1 신호전달을 통한 근 분화 유도 및 에너지 대사 증진 효과 비교 (Comparison of the Effects of Pharmacopuncture Extracts with Hominis placenta Pharmacopuncture and Wild Ginseng Pharmacopuncture on the Differentiation of C2C12 Myoblasts into Myotubes through Regulation of the AMPK/SIRT1 Signaling Pathway)

  • 황지혜;정효원
    • 한방비만학회지
    • /
    • 제23권2호
    • /
    • pp.60-68
    • /
    • 2023
  • Objectives: This study was conducted to compare the effects of Hominis placenta (Jahage, J) and wild ginseng (SanSam, S) pharmacopuncture drugs on muscle differentiation and energy metabolism regulation in C2C12 myotubes. Methods: The C2C12 myoblasts were differentiated into myotubes for 5 days by replacing in medium containing 2% horse serum and then treated with J and S pharmacopuncture extract at different concentrations for 24 hr. The expression of myosin heavy chain and energy metabolism-regulating factors, myosin heavy chain (MHC), nuclear respiratory factor-1 (NRF-1), and proliferator-activated receptor γ coactivator-1 alpha (PGC-1α) were determined in C2C12 myotubes by western blot. Additionally, the phosphorylation of AMPK and the expression of mitochondrial biogenesis, including sirtuin 1 (SIRT1) were determined in the myotubes. Results: As a result, treatment with J and S pharmacopuncture extract at 0.1 and 1 mg/mL increased the MHC expression in C2C12 myotubes compared with non-treated cells, but only S pharmacopuncture was shown a significant and distinct increase in the expression. Expression of TFAM and NRF-1 was also shown significant increases in S and J pharmacopuncture in C2C12 myotubes compared to non-treated cells. The phosphorylation of AMPK and the expression of PGC-1α and SIRT1 showed increased expression in S and J pharmacopuncture compared to non-treated cells. The effect of low-dose of J pharmacopuncture on the phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and PGC-1α expression was greater than that of S pharmacopuncture. Conclusions: In conclusion, both J and S pharmacopuncture promote muscle differentiation in C2C12 myoblasts into myotubes and energy metabolism through the AMPK/SIRT1 signaling pathway. This indicates that the pharmacopuncture with tonic herbal medicines can help to improve skeletal muscle function.

Reciprocal regulation of SIRT1 and AMPK by Ginsenoside compound K impedes the conversion from plasma cells to mitigate for podocyte injury in MRL/lpr mice in a B cell-specific manner

  • Ziyu Song;Meng Jin;Shenglong Wang;Yanzuo Wu;Qi Huang;Wangda Xu;Yongsheng Fan;Fengyuan Tian
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.190-201
    • /
    • 2024
  • Background: Deposition of immune complexes drives podocyte injury acting in the initial phase of lupus nephritis (LN), a process mediated by B cell involvement. Accordingly, targeting B cell subsets represents a potential therapeutic approach for LN. Ginsenoside compound K (CK), a bioavailable component of ginseng, possesses nephritis benefits in lupus-prone mice; however, the underlying mechanisms involving B cell subpopulations remain elusive. Methods: Female MRL/lpr mice were administered CK (40 mg/kg) intragastrically for 10 weeks, followed by measurements of anti-dsDNA antibodies, inflammatory chemokines, and metabolite profiles on renal samples. Podocyte function and ultrastructure were detected. Publicly available single-cell RNA sequencing data and flow cytometry analysis were employed to investigate B cell subpopulations. Metabolomics analysis was adopted. SIRT1 and AMPK expression were analyzed by immunoblotting and immunofluorescence assays. Results: CK reduced proteinuria and protected podocyte ultrastructure in MRL/lpr mice by suppressing circulating anti-dsDNA antibodies and mitigating systemic inflammation. It activated B cell-specific SIRT1 and AMPK with Rhamnose accumulation, hindering the conversion of renal B cells into plasma cells. This cascade facilitated the resolution of local renal inflammation. CK facilitated the clearance of deposited immune complexes, thus reinstating podocyte morphology and mobility by normalizing the expression of nephrin and SYNPO. Conclusions: Our study reveals the synergistic interplay between SIRT1 and AMPK, orchestrating the restoration of renal B cell subsets. This process effectively mitigates immune complex deposition and preserves podocyte function. Accordingly, CK emerges as a promising therapeutic agent, potentially alleviating the hyperactivity of renal B cell subsets during LN.

황정 에탄올 추출물의 비만 조절 유전자에 대한 효과 (Effects of ethanol extract of Polygonatum sibiricum rhizome on obesity-related genes)

  • 전우진;이도섭;손서연;서윤지;연승우;강재훈
    • 한국식품과학회지
    • /
    • 제48권4호
    • /
    • pp.384-391
    • /
    • 2016
  • 선행연구(12,13)에 따르면 10주간 ID1216을 투여한 비만 마우스에서 체중과 체지방이 감소하였고 이는 SIRT1-$PGC1{\alpha}$의 발현을 조절하여 나타나는 것으로 확인하였다. 본 연구는 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$의 하위 기전인 UCPs, ACO, aP2의 발현 조절에 ID1216이 영향을 미쳐 그 효과를 나타내는 것을 추가로 확인한 것에 의미가 있다. 또한 10주간 ID1216을 투여한 비만 마우스의 혈액 분석 결과에서도 혈중 중성지방, LDL, HDL total cholesterol등의 혈중 지방질 수치가 개선됨과 동시에 free fatty acid의 농도는 감소하였는데 이는 ID1216이 HSL과 같은 지방질분해효소의 활성을 조절하여 중성지방의 분해과정에 관여하기는 하나 에너지 대사와 지방산 산화 과정에도 복합적으로 관여하여 최종적으로 나타내는 비만 대사 조절 효과에 의한 것으로 판단된다. 따라서 ID1216은 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway를 촉진시켜 세포와 조직 수준에서 열발생(thermogenesis)에 관여하는 유전자인 UCP1, UCP2, UCP3의 발현을 증가시켰고 ${\beta}$-oxidation에 관여하는 유전자인 ACO와 aP2의 발현도 증가시켰으며 또한 지방분해(lypolysis)에 관여하는 유전자인 ATGL과 HSL의 발현을 증가시키는 분자생물학적 기전을 나타내어 체지방 감소 효과를 나타내는 것으로 확인되었다.

고지방식이로 비만이 유도된 마우스에서 황정 주정 추출물의 항비만 효과 (Anti-obesity Effects of Ethanolic Extract of Polygonatum sibiricum Rhizome in High-fat Diet-fed Mice)

  • 고종희;전우진;권혁상;연승우;강재훈
    • 한국식품과학회지
    • /
    • 제47권4호
    • /
    • pp.499-503
    • /
    • 2015
  • 본 연구에서는 P. sibiricum rhizome (황정)의 80% 알코올 추출물인 ID1216의 비만예방모델과 치료동물모델에서 비만 억제 효과를 입증하고 ID1216의 비만 억제 관련 조절인자를 밝히고자 하였다. ID1216은 비만예방동물모델에서 사료섭취량 감소 없이 유의적인 체중 증가 억제 효과를 보였으며, 비만치료동물모델에서도 대조약물인 지방흡수억제제인 orlistat과 동등한 복부 지방감소를 동반한 항비만 효과를 나타내었다. ID1216의 체중 증가 억제를 유도하는 조절인자를 확인하기 위해서 비만예방모델과 단회 투여 시험 후 부고환지방조직과 분화된 3T3-L1 지방세포주에서 관련 유전자 및 단백질의 발현 변화를 조사하였다. 이를 통해 ID1216의 항비만 효과가 SIRT1, $PGC1{\alpha}$$PPAR{\alpha}$의 발현 증가와 관련됨을 확인하였다. 또한 단회 투여만으로도 지방조직에서 SIRT1과 $PGC1{\alpha}$의 발현을 유도하는 것을 확인함으로써 ID1216이 이들 유전자 발현을 직접적으로 조절할 가능성을 제시하였다. ID1216은 P. sibiricum rhizome 추출물로 다양한 성분을 포함하고 있어 $PGC1{\alpha}$, $PPAR{\alpha}$와 SIRT1의 발현을 독립적으로 조절하거나 또는 주 조절 인자인 SIRT1의 발현 또는 활성을 증가시켜 순차적인 반응을 유도할 수 있을 것으로 예상되며, 이를 규명하기 위해서는 더욱 체계적인 연구가 필요할 것으로 판단된다. 본 연구는 ID1216에 의해 지방조직에서 지방산 산화 및 발열과 관련된 유전자 발현 증가를 통해 체중 및 지방 감소 효과가 있음을 보여줌으로써, ID1216이 향후 유용한 항비만 소재로 활용될 가능성을 제시하였다.

Inhibitory Effects of a Combination of Grapefruit and Rosemary Extracts for Alleviating UV-Induced Skin Ageing

  • Choi, Hee-Jeong;Alam, Badrul;Zhao, Peijun;Cha, Yeong-Ho;Kim, Tae-Ho;Lee, Sang-Han
    • 한국자원식물학회지
    • /
    • 제32권3호
    • /
    • pp.207-219
    • /
    • 2019
  • Ultraviolet (UV) radiation is associated with the development of extrinsic skin aging. We performed in vivo assays in order to investigate the protective effect of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-induced skin aging. The results indicated that cG&Re displayed elastase inhibitory activity in a dose-dependent manner. Topical application of cG&Re mitigated photo-aging related lesions such as skin erythema and thickening in photo-aged BALB/c mice dorsal skin, by preventing UVB-induced collagen degradation. Immunohistochemical analyses revealed that cG&Re stimulated SIRT-1 expression, and suppressed MMP-1 and $IL-1{\beta}$ expression. It was observed that expression of MMP-1 and -13 mRNA was downregulated in the cG&Re-treated group. Furthermore, cG&Re treatment drastically suppressed protein expression of MMP-1 and regulated the phosphorylation of p-38 kinase. As expected, oral administration of cG&Re resulted in the same SIRT-1, MMP-1, and $IL-1{\beta}$ expression patterns observed upon topical application of cG&Re in the UV-induced mice model. Overall, the current results demonstrated that cG&Re attenuated both the downregulation of MMP-1 expression and up-regulation of SIRT-1 expression, as well as decreased phosphorylation of MAPK in UVB-induced skin ageing mice model, suggesting that cG&Re might be used as an internal food ingredient for beauty-purposes as well as a functional food material.

쿠메스트롤의 미토콘드리아 생합성 증가를 통한 피부 광노화 예방 효과 (Beneficial Effect of Coumestrol on Ultraviolet B-Induced Skin Photoaging through Mitochondrial Biogenesis)

  • 김수경;김정기;서대방;이상준
    • 대한화장품학회지
    • /
    • 제38권3호
    • /
    • pp.237-245
    • /
    • 2012
  • 쿠메스트롤은 식물이 스트레스에 대항해 합성하는 phytoalexins의 일종으로, 알팔파 새싹, 클로버, 콩나물에서 일반적으로 발견된다. 본 연구에서는 쿠메스트롤의 자외선에 의해 유도되는 피부 진피세포 광노화 예방 효능에 관한 연구를 실시하였다. 쿠메스트롤 전처리는 자외선 B 조사에 의해 감소된 Sirt1 단백질 발현 및 활성과 하위 미토콘드리아 생합성 관련 유전자인 PGC-$1{\alpha}$, NRF1, TFAM의 발현 변화를 감소시켰다. 또한, ATP 및 ROS 생성량을 정상화시키고 피부 노화를 유도하는 최종당화산물 생성을 억제하였다. 이상의 결과에서 쿠메스트롤은 자외선 조사에 의해 발생하는 진피 세포 내 미토콘드리아 손상 및 이에 따른 당화 단백질 생성을 감소시킴으로써 피부 광노화 현상으로부터 보호할 수 있음을 확인하였다.

Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes

  • Lee, Hee Jae;Yang, Soo Jin
    • Nutrition Research and Practice
    • /
    • 제13권1호
    • /
    • pp.3-10
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The $NAD^+$ precursor nicotinamide riboside (NR) is a type of vitamin $B_3$ found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS: A subset of hepatocytes was treated with palmitic acid (PA; $250{\mu}M$) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR ($10{\mu}M$ and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS: Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS: These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.