• 제목/요약/키워드: Sinusoidal Vibration

검색결과 267건 처리시간 0.02초

저왜율을 갖는 2상정현파 전압제어 발진기에 관한 연구 (A Study on the two phase sinusoidal voltage Controlled Oscillator with Low Distortion)

  • 이성백;이윤종
    • 한국통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.527-534
    • /
    • 1987
  • 진동에 관한 비선형 1계연립미분방정식을 아나로그 시뮬레이션으로 2상전압제어발진을 시켜 유용성을 확인하였다. 2상신호를 각각 제곱하여 합성하는 부분과 곱셈부분의 실제회로 구성시 복잡하고 가격이 높아지므로 정류 회로와 스위칭회로로 대치하여 회로의 단순화와 가격 저렴화를 이루었다. 본 논문에서 제시된 회로는 제어 압력전압에 주파수가 정확한 비례관계를 가졌고, 응답 속도가 비교적 빠르고 또한 위상오차가 매우 적었으며 주파수비가 10:1 이상에서도 저왜율과 정진폭으로 동작하였다.

  • PDF

비정현적인 역기전력을 가진 매입형 영구자석 동기전동기의 토크리플 저감에 관한 연구 (Torque Ripple Minimization for IPMSM with Non Sinusoidal Back-EMF)

  • 이상훈;홍인표;박성준;김철우
    • 전력전자학회논문지
    • /
    • 제7권1호
    • /
    • pp.91-100
    • /
    • 2002
  • 본 논문에서는 매입형 영구자석 동기전동기의 전자기 토크의 맥동저감에 관하여 기술하였다. 일반적으로 토크 맥동은 전동기의 진동과 소음을 유발하는 중요한 원인이 된다. 제안된 방법에서는 비정현적인 역기전력을 가진 IPMSM에서 토크 맥동을 저감하기 위해 단위전류당 최대토크 제어를 할 수 있는 최적의 전류 형상을 고려하여 도출하였다. 그리고 이를 전동기에 인가했을 때 토크 맥동이 개선될 수 있음을 시뮬레이션과 실험을 통해서 입증하였다.

입력 전류 파형에 따른 Linear Pulse Motor의 정특성 고찰 (The Static Characteristics Investigation of Lineal Pulse Motor According to Input Current Waveforms)

  • 허두석;김경호;황동원;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.747-749
    • /
    • 2003
  • When the input current wave forms of Linear Pulse Motor(LPM) is excited as three difference type such as the square, the rectangular and the micro sinusoidal wave, this paper is proposed the calculation of thrust on the base of magnetic equivalent circuit of LPM. The thrust is analyzed and compared by the analytical method, the F.E.M. and the experimental values. Also, to decide the input current wave for optimal operation condition, the vibration of LPM is experimented and estimated.

  • PDF

Robust Optical Detection Method for the Vibrational Mode of a Tuning Fork Crystal Oscillator

  • Choi, Hyo-Seung;Song, Sang-Hun
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.93-95
    • /
    • 2015
  • We present an optical detection method for the fundamental vibrational mode of a tuning fork crystal oscillator in air. A focused He/Ne laser beam is directed onto the edge of one vibrating tine of the tuning fork; its vibrating motion chops the incoming laser beam and modulates the intensity. The beam with modulated intensity is then detected and converted to an electrical signal by a high-speed photo-detector. This electrical signal is a sinusoid at the resonant frequency of the tuning fork vibration, which is 32.76 kHz. Our scheme is robust enough that the sinusoidal signal is detectable at up to $40^{\circ}$ of rotation of the tuning fork.

공압 전달관의 동적 응답 (Dynamic Response of Pneumatic Transmission Lines)

  • 박현우;박종호;신필권;심우건
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.285-294
    • /
    • 1999
  • Transient analysis for compressible fluid flow has been performed experimentally and analytically to study the dynamic characteristics of the end volume transmission lines following a sudden pressure change a its entrance. The numerical method was developed based on the method of characteristics. The sudden pressure at its entrance was generated by rupture of diaphragm in a shock tube. The sudden pressure was used to obtain the response, as input signal for the numerical analysis. The response to the sudden pressure at the end volume was measured using a pressure transducer. The experimental result shows good agreements with the numerical result. The effects of tube length, its diameter and end volume magnitude are evaluated on the responses of the pressure and on the damping factor. It is found that the viscous damping effects on the response through the transmission pipeline becomes larger with increasing pi;eline length and decreasing diameter of the pipe and the fluid-elastic stiffness decreases with increasing the terminal volume. The numerical approach presented in this paper can be very useful in designing the instrument and control system.

  • PDF

Development of an Efficient Notching Toolkit for Response Limiting Method

  • Shin, Jo Mun
    • 항공우주시스템공학회지
    • /
    • 제15권4호
    • /
    • pp.40-46
    • /
    • 2021
  • At launch, satellites are exposed to various types of structural loads, such as quasi-static loads, sinusoidal vibrations, acoustic/random vibrations, and shocks. The launch environment test is aimed at verifying the structural stability of the test object against the launch environment. Various types of launch environments are simulated by simple vibration, acoustic, and shock tests considering possible test conditions in ground. However, the difference between the launch environment and the test environment is one of the causes of excessive testing. To prevent overtesting, a notching technique that adjusts the frequency range and the input load considering the design load is applied. For notching, specific procedures are established considering the satellite development concept, selected launch vehicle, higher system requirements, and test target level. In this study, the notching method, established procedure, and development of a notching toolkit for efficient testing are described.

Modulating Laser를 이용한 ESPI System algorithm 개발에 관한 연구 (Research about ESPI System Algorithm Development that Use Modulating Laser)

  • 김성종;강영준;박낙규;이동환
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.65-72
    • /
    • 2009
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example out-of-plane ESPI (Electronic Speckle Pattern Interferometry), in plane ESPI, shearography and holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD (Laser Diode) Modulating interferometry that involves four-frame phase shift method. This study proposes a four-frame phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Using modulating laser and research of measurement algorithm does comparison with existent ESPI measurement algorithm. Algorithm measures using GPIB communication through most LabVIEW 8.2. GPIB communication does alteration through PC. Transformation of measurement object measures through modulating laser algorithm that develops. Comparison of algorithm of modulating laser developed newly with existent PZT algorithm compares transformation price through 3-D. Comparison of 4-frame phase mapping, unwrapping, 3-D is then introduced.

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.

헬리콥터 능동진동제어시스템 가속도 신호 처리 (Accelerometer Signal Processing for a Helicopter Active Vibration Control System)

  • 김도형
    • 한국항공우주학회지
    • /
    • 제45권10호
    • /
    • pp.863-871
    • /
    • 2017
  • 헬리콥터 능동진동제어시스템에 널리 이용되는 LMS (least mean square) 알고리즘은 전방경로 (forward path) 전달함수와 에러 신호의 연산을 통해 제어 입력을 계산한다. 에러 신호가 정현파 형태일 경우, 기준 신호에 동기화된 진동수, 위상을 가지는 코사인과 사인 함수의 조합으로 표현될 수 있다. 제어 신호 또한 동일한 진동수를 가지게 되므로 제어 입력의 코사인, 사인 성분의 크기만 계산하고, 기준 신호의 진동수, 위상 정보를 활용하면 제어알고리즘은 단순하게 구현될 수 있다. 제어 입력 신호의 계산은 단순한 행렬 연산으로 구현되고, 제어 명령의 변화는 에러 센서의 주파수에 비해 느리기 때문에 제어알고리즘은 낮은 주파수에서 운용 가능하다. 에러 센서의 코사인, 사인 성분을 추출하는 신호처리 알고리즘을 시뮬링크 모델로 구현하고, PIL (processor in the loop) 모드 시뮬레이션을 통해 실시간 작동 성능을 평가하였다.

Theoretical investigation on rain-wind induced vibration of a continuous stay cable with given rivulet motion

  • Li, Shouying;Chen, Zhengqing;Li, Shouke
    • Wind and Structures
    • /
    • 제19권5호
    • /
    • pp.481-503
    • /
    • 2014
  • A new theoretical model on rain-wind induced vibration (RWIV) of a continuous stay cable is developed in this paper. Different from the existing theoretical analyses in which the cable was modeled as a segmental rigid element, the proposed scheme focuses on the in-plane and out-of-plane responses of a continuous stay cable, which is identical with the prototype cable on cable-stayed bridge. In order to simplify the complexities, the motion law of the rivulet on the cable surface is assumed as a sinusoidal way according to some results obtained from wind tunnel tests. Quasi-steady theory is utilized to determine the aerodynamic forces on the cable. Equations of motion of the cable are derived in a Cartesian Coordinate System and solved by using finite difference method to obtain the in-plane and out-of-plane responses of the cable. The results show that limited cable amplitudes are achieved within a limited range of wind velocity, which is a unique characteristic of RWIV of stay cable. It appears that the in-plane cable amplitude is much larger than the out-of-plane cable amplitude. Rivulet frequency, rivulet distribution along cable axis, and mean wind velocity profile, all have significant effects on the RWIV responses of the prototype stay cable. The effects of damping ratio on RWIVs of stay cables are carefully investigated, which suggests that damping ratio of 1% is needed to well mitigate RWIVs of prototype stay cables.