DOI QR코드

DOI QR Code

Accelerometer Signal Processing for a Helicopter Active Vibration Control System

헬리콥터 능동진동제어시스템 가속도 신호 처리

  • Received : 2017.06.05
  • Accepted : 2017.09.13
  • Published : 2017.10.01

Abstract

LMS (least mean square) algorithm widely used in the AVCS (active vibration control system) of helicopters calculates control input using the forward path transfer function and error signal. If the error signal is sinusoidal, it can be represented as the combination of cosine and sine functions with frequency and phase synchronized with the reference signal. The control input also has the same frequency, therefore control algorithm can be simply implemented if the cosine and the sine amplitudes of the control input are calculated and the frequency and phase of the reference signal are used. Calculation of the control input is implemented as simple matrix operation and the change of the control command is slower than the frequency of the error signal, consequently control algorithm can be operated at lower frequency. The signal processing algorithm extracting cosine and sine components of the error signals are modeled using Simulink and PIL (processor-in-the-loop) mode simulation was executed for real-time performance evaluation.

헬리콥터 능동진동제어시스템에 널리 이용되는 LMS (least mean square) 알고리즘은 전방경로 (forward path) 전달함수와 에러 신호의 연산을 통해 제어 입력을 계산한다. 에러 신호가 정현파 형태일 경우, 기준 신호에 동기화된 진동수, 위상을 가지는 코사인과 사인 함수의 조합으로 표현될 수 있다. 제어 신호 또한 동일한 진동수를 가지게 되므로 제어 입력의 코사인, 사인 성분의 크기만 계산하고, 기준 신호의 진동수, 위상 정보를 활용하면 제어알고리즘은 단순하게 구현될 수 있다. 제어 입력 신호의 계산은 단순한 행렬 연산으로 구현되고, 제어 명령의 변화는 에러 센서의 주파수에 비해 느리기 때문에 제어알고리즘은 낮은 주파수에서 운용 가능하다. 에러 센서의 코사인, 사인 성분을 추출하는 신호처리 알고리즘을 시뮬링크 모델로 구현하고, PIL (processor in the loop) 모드 시뮬레이션을 통해 실시간 작동 성능을 평가하였다.

Keywords

References

  1. Loewy, Robert G., "Helicopter Vibrations: A Technological Perspective," Journal of the American Helicopter Society, Vol. 29, No. 4, 1984, pp. 4-30. https://doi.org/10.4050/JAHS.29.4
  2. Yun, C. Y., Kim, D.-H., and Kang, H. J., "Vibration Prediction of Helicopter Airframe," KSNVE Annual Spring Conference, Yeosu, April 2013, pp. 25-26.
  3. Jung, S.-U., Kwak, D.-I., Kim, S.-H., Choi, J.-H., and Shim, D.-S., "Vibration Reduction Devices for Korean Utility Helicopter," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 12, 2013, pp. 987-993. https://doi.org/10.5139/JKSAS.2013.41.12.987
  4. Swanson, D., Black, P., Girondin, V., Bachmeyer, P., and Jolly, M., "Active Vibration Control Using Circular Force Generators," 41st European Rotorcraft Forum, Munich, Germany, September 2015 , pp. 1-4.
  5. Kim, D.-H., Kim, T.-J., Paek, S.-K., Kwak, D.-I., and Jung, S.-U., "Application and Performance Evaluation of Helicopter Active Vibration Control System for Surion," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 6, 2015, pp. 156-165. https://doi.org/10.5139/JKSAS.2015.43.2.156
  6. Kim, D.-H., Kim, T.-J., Jung, S.-U., and Kwak, D.-I., "Test and Simulation of an Active Vibration Control System for Helicopter Application," International Journal of Aeronautical and Space Sciences, Vol. 17, No. 3, 2016, pp. 442-453. https://doi.org/10.5139/IJASS.2016.17.3.442
  7. S.J. Elliott and P.A. Nelson, "Active noise control," IEEE signal processing magazine, October 1993, pp. 12-35.
  8. Lim, H.-C., Jung, S. U., Kwak, D.-I., and Kim, D.,-H., "Design of Performance Parameter in accordance with Helicopter vibration change," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, Jeju, November 2016, pp. 16-18
  9. Simulink User's Guide, The Mathworks Inc., Natrick, MA, 2015.