• Title/Summary/Keyword: Sinusoidal PWM

Search Result 246, Processing Time 0.024 seconds

A Utility Interactive Photovoltaic Generation System Using PWM Converter (PWM 컨버터를 이용한 계통연계형 태양광발전 시스템)

  • Chung, J.H.;Jho, J.M.;Jeon, K.Y.;Lee, S.H.;Oh, B.H.;Kim, S.N.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1253-1255
    • /
    • 2003
  • Since the residential load is an AC load and the output of solar cell is a DC Power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation. it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Electronic-Hydraulic Hitch Control System for Agricultural Tractor -Position Control- (트랙터의 전자유압식(電子油壓式) 히치제어 시스템에 관한 연구(硏究)(I) -위치제어(位置制御)-)

  • Yoo, S.N.;Ryu, K.H.;Park, J.G.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.168-180
    • /
    • 1989
  • This study was attempted to develop the electronic-hydraulic hitch control system for position control of tractor plow and investigate the control performance of the system through experiments. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in position control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. The following conclusions were derived from the study; 1. For the position control system operated on on-off control mode, positions of implement were controlled within ${\pm}0.73^{\circ}{\sim}{\pm}1.46^{\circ}$ in rockshaft angle to the reference position when the hydraulic flow rates were 5~15 l/min. For the position control system operated on PWM control mode, positions of implement were controlled within ${\pm}0.73^{\circ}$ to the reference position regardless of hydraulic flow rates. It means that the implement could be positioned more accurately to the reference position on PWM control mode than on on-off control mode. 2. As results of the frequency responses of the position control systems, no clear difference in control performance between on-off control and PWM control modes was found. As the hydraulic flow rates increased, the corner frequencies of amplitude attenuation and phase-angle change increased. It means that the control performance of the system could be improved as the hydraulic flow rate increases.

  • PDF

Improvement of Switching Converter's Input Wave Using VIENNA Rectifier (VIENNA 정류기를 이용한 스위칭 컨버터의 입력 파형 개선)

  • Jung, Hun-Sun;Choi, Jae-Ho;Chung, Gyo-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.201-204
    • /
    • 2007
  • This paper proposes a improvement of switching converter's input wave form using VIENNA Rectifier(three-phase three-switch three-level PWM Rectifier). VIENNA Rectifier is based on the combination of a three-phase diode bridge and dc/dc boost converter. It can be available to get sinusoidal mains current, and low-blocking voltage stress on rower transistors. In addition, it can control output voltage.

  • PDF

A study on the single phase AC/AC converter (단상 AC/AC 컨버터에 관한 연구)

  • Bae, Sang-June;Chung, Ta-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1931-1933
    • /
    • 1998
  • In this paper, single-phase PWM AC to AC converter that operates with unit power factor and sinusoidal input line currents is presented. The output voltage of this converter is able to be obtain step up voltage as well as step down voltage. because the converter applies to operating method of buck-boost converter. The control of this converter is performed with PI control method. By using this control method low lipples in the output current and the voltage as well as fast dynamic response are achieved.

  • PDF

The Load Current Observer Design for Torque Control of DC Meter (직류 전동기의 속도 토크 제어를 위한 부하 전류 관측기 설계)

  • Seo Young-Soo;Kim Eun-Gi;Kim Yong-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.155-158
    • /
    • 2001
  • In this paper, the Load Current Observer Design for 3-phase Voltage Type PWM Converter with DC Meter Load. The sinusoidal input current and unity input power factor are realised based on the estimated source voltage performed by the Load Current Observer using actual currents and DC link voltage.

  • PDF

A Study on PFC Buck-Boost AC-DC Converter of Soft Switching (소프트 스위칭형 PFC 벅-부스트 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 2007
  • The system efficiency of the proposed Buck-Boost AC-DC converter is increased by soft switching method. The converter includes to merit of power factor correction (PFC) from sinusoidal control of input current. The switching behavior of control switches operates with soft switching by partial resonance, and then the proposed converter has high system efficiency with decrement of switching power loss. The input current waveform in proposed converter is got to be a sinusoidal form of discontinuous quasi-pulse row in proportion to magnitude of AC input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity. The output voltage of the converter is regulated by PWM control technique. The discontinuous mode action of current flowing into inductor makes to simplify control method and control components. The proposed PFC Buck-Boost converter is analyzed to compare with the conventional PFC Buck-Boost converter. Some computer simulative results and experimental results confirm to the validity of the analytical results.

Current Control for an AFE Rectifier Using Space Vector PWM (공간벡터변조방식에 의한 AFE정류기의 전류제어)

  • Jeon, Cheol-Hwan;Hur, Jae-Jung;Yoon, Kyoung-Kuk;Yoo, Heui-Han;Kim, Sung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.498-503
    • /
    • 2019
  • Electric propulsion ships are gaining widespread interest in the marine industry owing to extreme air pollution concerns. Consequently, several studies are actively being conducted for improving the power quality. Various methods have been developed that incorporate passive filters, notch filters, and active filters for reducing the harmonic content in the input current of a conventional diode front end rectifier. Among such filters, the active front end (AFE) rectifier is considered as an excellent technology. In this paper, current control for an AFE rectifier employing space vector PWM (Pulse Width Modulation) is proposed. Conventional current control methods for the AFE rectifier, hysteresis, SPWM (Sinusoidal Pulse Width Modulation), and SVPWM (Space Vector Pulse Width Modulation) were simulated by employing the PSIM software tool for analysis and comparisons. The results corroborate that SVPWM has the simplest structure and provides the best performance.

A Study on the Utility Interactive Photovoltaic System Using a Chopper and PWM Voltage Source Inverter for Air Conditioner a Clinic room (병실 냉.난방을 위한 초퍼와 PWM 전압형 인버터를 이용한 계통 연계형 태양광 발전시스템에 관한 연구)

  • Hwang, L.H.;Na, S.K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.360-369
    • /
    • 2008
  • The solar cells should be operated at the maximum power point because its output characteristics were greatly fluctuated on the variation of insolation, temperature and load. It is necessary to install an inverter among electric power converts by means of the output power of solar cell is DC. The inverter is operated supply a sinusoidal current and voltage to the load and the interactive utility line. In this paper, the proposes a photovoltaic system is designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper is operated in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature for solar cell has typical dropping character. The single phase PWM voltage source inverter is consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be develop continuously by connecting with the source of electric power for ordinary using. It can be cause the efect of saving electric power, from 10 to 20%. The single phase PWM voltage source inverter operates in situation, that its output voltage is in same phase with the utility voltage. The inverter are supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

A Study on the Utility Interactive Photovoltaic System using a Chopper and a PWM Inverter (쵸퍼와 PWM 전압형 인버터를 이용한 계통연계형 태양광발전시스템에 관한 연구)

  • 유택빈;성낙규;이승환;김성남;이훈구;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.131-137
    • /
    • 1998
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. Photovoltaic system needs an inverter which can interface the dc output power of solar cell with the residential ac load. The inverter has to supply a sinusoidal current and voltage to the load and the utility line with a high power factor. This paper proposes an utility interactive photovoltaic system designed with a step-up chopper and a PWM voltage source inverter. The step-up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power points of solar cell without any influence on the variation of insolation and temperature. The voltage source inverter operates in a manner that its output voltage is in phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

The Calculation of Illuminance Distribution in Complex Interior using Montecarlo Simulation (몬테카를로 시뮬레이션을 이용한 다면 공간의 조도계산)

  • Kim, Hee-Chul;Chee, Chul-Kon;Kim, Hoon
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.6
    • /
    • pp.27-33
    • /
    • 1993
  • In order to improve complicated construction and complex control which are didvantage of optimal PWM technique aimed at harmonic elimination method, this paper presented MRA(Mode1 Reference Adaptive) PWM technique that gating signal of inverter is generated by comparing the reference signal with the induced feedback signal at the reference model of load. Design of controller is composed of microprocessor and analog circuit. MRA PWM technique used in the paper is able to compensate the degradation of voltage efficiency to be generated by the ratio of the output voltage to the DC supply voltage being low for using conventional sinusoidal PWM technique. When the trapezoidal signal is employed as the reference signal. the low order harmonics of line current can be reduced and the switching pattern is made by on-line computation using comparatively simple numerical analysis.

  • PDF