• Title/Summary/Keyword: Sinusoidal Loading

Search Result 81, Processing Time 0.02 seconds

Limit point instability of shallow arches under localized sinusoidal loading

  • Ayfer Tekin Atacan
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.665-677
    • /
    • 2023
  • In the present study, the limit point buckling and postbuckling behaviors of sinusoidal, shallow arches with pinned supports subjected to localized sinusoidal loading, based on the Euler-Bernoulli beam theory, are numerically analyzed. There are some studies on the buckling of sinusoidal shallow arches under the effect of sinusoidal loading. However, in these studies, the sinusoidal loading acts along the horizontal projection of the entire shallow arch. No study has been found in the relevant literature pertaining to the stability of the shallow arches subjected to various lengths of sinusoidal loading. Therefore, the purpose of this paper is to contribute to the literature by examining the effect of the length of the localized sinusoidal loading and the initial rise of the shallow arch on the limit point buckling and postbuckling behaviors. Equilibrium paths corresponding to certain values of the length of the localized sinusoidal loading and various values of the initial rise parameter are presented. It has been observed that the length of the sinusoidal loading and the initial rise parameter affects the transition from no buckling to limit point instability remarkably. The deformed configurations of the sinusoidal shallow arch under localized loading regarding buckling and postbuckling states are illustrated, as well. The effects of the length of the localized sinusoidal loading on the internal forces of the shallow arch are investigated during various stages of the loading.

An Experimental Study on the Liquefaction Behavior under Various Loading Conditions (다양한 입력하중에서의 액상화 발생 특성 비교 연구)

  • Kim, Soo-Il;Hwang, Seon-Ju;Park, Keun-Bo;Choi, Jae-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.320-327
    • /
    • 2005
  • Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal, wedge, increasing wedge and real earthquake loading are investigated focusing on the excess pore water pressure build up instead of liquefaction resistance strength in this paper. There are large differences between two types of earthquake loading - impact and vibration in liquefaction characteristics. The angle of phase change line of sinusoidal loading is very close to the vibration type, whereas the cumulative deviator stress and cumulative plastic strain are larger than two types of real earthquake loadings. On the other hand, the liquefaction characteristics of increasing wedge loadings are located in the range between vibration and impact earthquake loadings. It is concluded that the sinusoidal loading overestimates the resistance of soil under real earthquake loading. Based on results obtained, the increasing wedge loading can reflect the liquefaction behavior under real earthquake loadings more efficiently than sinusoidal loading based on equivalent uniform stress concept.

  • PDF

Fundamental Comparison of Moduli Values in Asphalt Concrete Mixture due to Various Sinusoidal Loadings (다양한 Sinusoidal 하중을 받는 아스팔트콘크리트 혼합물의 Moduli 값에 대한 비교연구)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was performed to estimate the moduli values of asphalt concrete mixture due to various sinusoidal loadings in compression and tension. Total five modes of loading were used under five testing temperatures of 32, 50, 68, 86, and $104^{\circ}F$ (0, 10, 20, 30, and $40^{\circ}C$); repeated compressive haversine loading with rest period, repeated tensile haversine loading with rest period, cyclic compressive loading, cyclic tensile loading, and alternate tensile-compressive loadings. The test results showed that, due to the repeated haversine loading with rest period, asphalt concrete demonstrated similar moduli in tension and compression at low temperatures,(0 and $10^{\circ}C$) while those moduli were different at high temperatures (20, 30, and $40^{\circ}C$). At high temperatures the compressive moduli were always higher than the tensile moduli. The uniaxial tensile moduli were higher than indirect tensile moduli at low temperatures. However, those moduli were similar at high temperatures. In uniaxial cyclic tension, compression, and alternate tension-compression tests, compressive moduli were higher than tensile and alternate tensile-compressive moduli throughout the temperatures. Generally, the moduli from the repeated haversine loading with rest period were always lower than those from the cyclic sinusoidal loading. The difference in moduli from the repeated haversine loading with rest period and cyclic sinusoidal loading becomes more significant as the temperature decreases.

Evaluation of thermal striping damage for a tee-junction of LMR secondary piping”

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo;Yoon, Sam-Son
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.837-843
    • /
    • 1998
  • This paper presents the thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the secondary piping of LMFR using Green's function method and standard FEM. The thermohydraulic loading conditions used in the present analysis are simplified sinusoidal thermal loads and the random type data thermal load. The thermomechainical fatigue damage was evaluated according to ASME code subsectionNH. The analysis results of fatigue for the sinusoidal and random load cases show that fatigue failure would occur at a geometrically discontinuous location during 90,000 hours of operation The fracture mechanics analysis showed that the crack would be initiated at an early stage of the operation. The fatigue crack was evaluated to propagate up to 5 ㎜ along the thickness direction during the first 944 and 1083 hours of operation for the sinusoidal and the random loading cases, respectively.

  • PDF

Theoretical analysis of transient wave propagation in the band gap of phononic system

  • Lin, Yi-Hsien;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.15-29
    • /
    • 2013
  • Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary materials which are periodically arranged as a 20-layered medium instead of infinite layered system for phononic system. The layered medium with finite dimension is subjected to a uniformly distributed sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The numerical results show that when a sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of band gap, the attenuation of the stress response is not obvious as that in the band gap.

Verification of Combined Sinusoidal Loads for Simulating Real Earthquakes (실지진 모사를 위한 조합형 정현하중의 적용성 검증)

  • Choi, Jae-soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.811-819
    • /
    • 2019
  • Since the Gyeongju earthquake in 2016 and the Pohang earthquake in 2017, the performance of various dynamic tests for seismic design has increased in Korea. However, sinusoidal load has been continuously used in the conventional laboratory tests to evaluate liquefaction potential and determine input-parameters in the numerical analysis. However, recent research results suggest that it is difficult to accurately simulate excess pore water changes of the ground under earthquake loads. In order to solve this problem, this study proposes a combined sinusoidal loading and examines its applicability to the cyclic shear and triaxial test. Also, its validity is examined through performing of shaking-table test and numerical analysis based on the effective stress model. As a result, it was found that the proposed combined sinusoidal loading can more accurately simulate the change of excess pore water pressure in saturated soils under real earthquake load than the sinusoidal load.

Chaotic Responses of Curved Plate under Sinusoidal Loading

  • W.Y. Poon;C.F. Ng;Lee, Y.Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.85-96
    • /
    • 2003
  • In the present investigation, the nonlinear dynamic buckling of a curved plate subjected to sinusoidal loading is examined. By the theoretical analyses, a highly nonlinear snap-through motion of a clamped-free-clamped-free plate and its effect on the overall vibration response are investigated. The problem is reduced to that of a single degree of freedom system with the Rayleigh-Ritz procedure. The resulting nonlinear governing equation is solved using Runge-Kutta (RK-4) numerical integration method. The snap-through boundaries, which vary with different damping coefficient and linear circular frequency of the flat plate are studied and given in terms of force and displacement. The relationships between static and dynamic responses at the start of a snap-through motion are also predicted. The analysis brings out various characteristic features of the phenomenon, i.e. 1) small oscillation about the buckled position-softening spring type motion, 2) chaotic motion of intermittent snap-through, and 3) large oscillation of continuous snap-through motion crossing the two buckled positions-hardening spring type. The responses of buckled plate were found to be greatly affected by the snap-through motion. Therefore, better understanding of the snap-through motion is needed to predict the full dynamic response of a curved plate.

Experimental Investigation of Combined Sinusoidal Loads to Simulate Soil Liquefaction Triggering under Real Earthquake Loads (실지진하중 하에서의 지반 액상화 발생을 모사하기 위한 조합 정현하중에 대한 실험적 고찰)

  • Choi, Jae Soon;Baek, Woo Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.29-35
    • /
    • 2018
  • This study is an experimental comparison on the fact that the sinusoidal load, which has been used so far in the laboratory cyclic test, which is an important part of the liquefaction triggering study, is somewhat different from the phenomenon that causes the soil liquefaction during the earthquake loading. To this end, this study proposes a new type of combined sinusoidal load and compares it with experimental results to load the conventional sine wave. In the comparison, the shaking table tests were carried out and the sample in the tests was remolded with the relative density of 40%, which is a condition where liquefaction is easy to occur. Firstly, the conventional cyclic test was carried out under the condition that with the amplitude of sine wave was 0.3 g. Additionally, 3 types of tests were performed using the combination loads made up with 0.03 g sinusoidal load and 0.3g sinusoidal load. At that time, the loading time for the first sinusoidal load were changed with 5 seconds, 10 seconds, and 15 seconds. As a result, the test with the conventional sine wave and the test with the first sinusoidal loading for 5 seconds showed that the change of the pore water pressure gradually increased. But in the tests with the combined sinusoidal load which changed the first sinusoidal loading time with 10 and 15 seconds, it was found that the pore water pressure suddenly rose at a certain instant and liquefaction occurs. From the experimental comparison, it is judged that it is appropriate that the time of the first sine wave is over 10 seconds at the proposed combined load for the soil condition with relative density 40%.

Harmonic Response Estimation Method on the Lévy Plate with Two Opposite Edges Having Free Boundary Conditions (마주보는 양단이 자유 경계조건을 갖는 Lévy 판의 조화 응답 해석)

  • Park, Nam-Gyu;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.943-950
    • /
    • 2013
  • This paper discusses a harmonic response estimation method on the L$\acute{e}$vy plate with two opposite edges simply supported and the other two edges having free boundary conditions. Since the equation of motion of the plate is not self-adjoint, the modes are not orthogonal to each other on the domain. Noting that the L$\acute{e}$vy plate can be expressed using one term sinusoidal function that is orthogonal to other sinusoidal functions, this paper suggested the calculation method that is equivalent to finding a least square error minimization solution of the finite number of algebraic equations. Example problems subjected to a distributed area loading and a distributed line loading are defined and their solutions are provided. The solutions are compared to those of the commercial code, ANSYS. According to the verification results, it is expected that the suggested method will be useful to predict the forced response on the L$\acute{e}$vy plate with the distributed area or line loading conditions.

Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading

  • Meksi, Abdeljalil;Benyoucef, Samir;Sekkal, Mohamed;Bouiadjra, Rabbab Bachir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.215-228
    • /
    • 2021
  • This paper investigates the effect of micromechanical models on the bending behavior of bidirectional functionally graded (BDFG) beams subjected to different mechanical loading. The material properties of the beam are considered to be graded in both axial and thickness directions according to a power law. The beam's behavior is modeled by the mean of quasi 3D displacement field that contain undetermined integral terms and involves a reduced unknown functions. Navier's method is employed to determine and compute the displacements and stress for a simply supported beam. Different homogenization schemes such as Voigt, Reus, and Mori-Tanaka are employed to analyze the response of the BDFG beam subjected to linear, uniform, exponential and sinusoidal distributed loading. The results obtained by the present method are compared with available results in the literature and a good agreement was found. Several numerical results are presented in tabular form and in figures to examine the effects of the material gradation, micromechanical models and types of loading on the bending response of BDFG beams. It can be concluded that the present theory is not only accurate but also simple in predicting the bending response of BDFG beam subjected to different static loads.