• Title/Summary/Keyword: Sintering properties

검색결과 2,373건 처리시간 0.033초

소결방법에 따른 다공성 티타늄 임플란트의 기계적 특성 (Mechanical property of porous Ti implants by sintering method)

  • 김영훈
    • 대한치과기공학회지
    • /
    • 제34권3호
    • /
    • pp.221-226
    • /
    • 2012
  • Purpose: This study was performed to compare mechanical properties for sintering methods of porous Ti implants. Methods: The specimens of Ti implant were fabricated by several sintering methods. One of them is spark plasma sintering(SPS). Another is electro discharge singering(EDS) and the other is high vacuum sintering(HVS). Mechanical properties of porous Ti implants were evaluated by universal testing machine(UTM) and their fracture surface was examined under a sanning electron microscope(SEM). Results: The tensile strength was in a range of 71 to 230 MPa, and Young's modulus was in a range of 11 to 21 Gpa. It matched with range of cortical bone. Conclusion: Mechanical properties of porous Ti implants were similar to human bone. It was shown that sintering methods of spherical powders can efficiently produce porous Ti implants with various porosities. Porous metals will be commonly used in orthopedic and dental application despite of initial focus has been on bioceramics.

소결조건 및 조성이 Fe-Si-P 소결제의 자기특성에 미치는 영향 (Effects of Sintering Condition and composition on the Magnetic Properties of Sintered Fe-Si-P)

  • 송재성;김기욱
    • 대한전기학회논문지
    • /
    • 제40권7호
    • /
    • pp.684-689
    • /
    • 1991
  • Magnetic properties of sintered Fe-Si-P alloys have been investigated as a function of sintering condition and composition. Sintering was carried in the temperature range from 1100ø C to 1400ø C in vacuum. As the sintering temperature increases, the magnetic properties of specimens were improved mainly due to the easy movement of domain wall because large pores and large grains were formed during the sintering process at high temperature. When sintered at 1400ø C, Fe-2w/o Si-0.5w/o P compact had the best mgnetic properties, but more phosphorus addition degraded magnetic properties. It appears that the degradation was caused by the formation of non-magnetic compounds such as Si P, Fe3P in the compacts with high phosphorus contents.

Zirconia-Frit composites의 소결 및 물성에 미치는 MgO 첨가의 효과 (Effect of MgO Addition Affecting in Zirconia-Frit Composites' Sintering and Properties of Matter)

  • 권은자;이규선
    • 대한치과기공학회지
    • /
    • 제32권1호
    • /
    • pp.9-16
    • /
    • 2010
  • This study sought to apply different MgO additions to Zirconia (20wt % Frit) and thereby determine its mechanical properties depending upon variation of temperature, as a part of elementary study. First, in terms of sintering density depending on sintering conditions, it was found that sintering density increased as temperature varied from $1100^{\circ}C$ to $1300^{\circ}C$. As the addition of MgO increased, it was found that sintering density tended to decrease at each temperature. For the maximum sintering density obtained from pellet, it was found that 3wt% MgO addition specimens sintered at $1300^{\circ}C$ had its maximum sintering density as high as 97.39%. This study measured mechanical properties of these specimens, and it was found that their bending strength tended to decrease as the content of MgO addition increased. And it was found that their bending strength reached up to 162 MPa when 3wt% MgO was added to them for sintering process at $1300^{\circ}\Delta C$. It was also found that those specimens had Vickers microhardness up to 4.6 GPa when 5wt% MgO was added to them for sintering process at $1300^{\circ}C$.

텅스텐 특성에 대한 소결온도의 영향 (Effect on Mechanical Properties of Tungsten by Sintering Temperature)

  • 박광모;이상필;배동수;이진경
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

  • Oh, Gye-Jeong;Yun, Kwi-Dug;Lee, Kwang-Min;Lim, Hyun-Pil;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • 제2권3호
    • /
    • pp.81-87
    • /
    • 2010
  • PURPOSE. The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS. Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo $Everest^{(R)}$ ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS. Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION. Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block.

마이크로웨이브 소결방법에 따른 치과용 지르코니아의 물리적 특성 (Comparative Study of Properties of Dental Zirconia According to Microwave Sintering Method)

  • 김태석;유진호;김기철;박원욱;서정일;황규홍
    • 대한치과기공학회지
    • /
    • 제34권1호
    • /
    • pp.11-21
    • /
    • 2012
  • Purpose: Densification and mechanical properties of dental zirconia ceramics were evaluated by different sintering methods. Materials and Methods: Y-TZP zirconia block(Kavo $Everest^{(R)}$ ZS blank, Kavo dental GmbH, Bismarckring, Germany) was used in this study. Sintering were performed in heat sintering furnace and microwave sintering furnace, and then experimented and analyzed on a change in densification according to the sintering time, a change in densification according to thickness, flexural strength and micro-structure in zirconia specimens. Results: Microwave sintering was very effective in considerable mechanical properties such as flexural strength and bulk density was drastically increased than conventional electric heating method. It is also shown that microwave sintering time was faster and more economical than common method to be present in qualities which equal or exceed. Conclusion: It will be important to seek the accurate sintering condition of dental zirconia by microwave sintering method and the continuous research is necessary for the study of relationship between sintering methods and mechanical properties.

고온 가압 적층 소결에 의한 황화아연 세라믹스의 광학성 특성 (Optical properties of ZnS ceramics by hot press stack sintering process)

  • 박범근;백종후
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.148-153
    • /
    • 2021
  • During the manufacture of a ZnS lens with excellent transmittance in the mid-infrared region (3-5 ㎛) by the hot-press process, a single-layer sintering method is used in which one lens is manufactured in one process. Additional research is required to improve this single-layer sintering method because of its low manufacturing efficiency. To solve this problem, the variation in optical properties of ZnS lenses with change in sintering temperature was investigated by introducing a Stack sintering method that can sinter multiple lenses simultaneously. A carbon paper was placed between the molded lenses and sintered into five layers. The average permeability of 67% at medium infrared wavelengths of 3-5 ㎛ was excellent under the following sintering conditions: pressure of 50 MPa and temperature of 850℃. This value is 1% less than the average permeability in the case of single-layer sintering of the ZnS lens. It was confirmed that the stack sintering method developed in this study can be used to manufacture a large number of lenses with excellent characteristics in a single process.

미세구조 제어를 통한 (Nd,Dy)-Fe-B 소결자석의 보자력 증가 (The Coercivity Enhancement of (Nd,Dy)-Fe-B Sintered Magnet by Microstructure Control)

  • 김진우;김세훈;김영도
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.18-23
    • /
    • 2011
  • Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the $Nd_2Fe_{14}B$ grains by the cyclic sintering.

Microstructure and Varistor Properties of ZVMND Ceramics with Sintering Temperature

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권4호
    • /
    • pp.221-225
    • /
    • 2015
  • The sintering effect on the microstructure, electrical properties, and dielectric characteristics of ZnO-V2O5-MnO2-Nb2O5-Dy2O3-based ceramics was investigated. With the increase of sintering temperature from 875 to 950℃, the density of the sintered pellets decreased from 5.57 to 5.45 g/cm3 and the average grain size increased from 4.3 to 10.9 μm. The breakdown field decreased noticeably from 6,095 to 996 V/cm with the increase of sintering temperature. The varistor ceramics sintered at 900℃ exhibited the best nonlinear properties: 39.2 in the nonlinear coefficient and 0.24 mA/cm2 in the leakage current density. The dielectric constant increased sharply from 658.6 to 2,928.8 with the increase of sintering temperature. On the whole, the dissipation factor exhibited a fluctuation with the increase of the sintering temperature, and a minimum value of 0.284 at 900℃.

저온소결 $Mg_4Nb_2O_9$ 세라믹스의 마이크로파 유전특성 (Microwave Dielectric Properties of Low-temperature Sintered $Mg_4Nb_2O_9$ Ceramics)

  • 이지훈;방재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.439-442
    • /
    • 2004
  • The effects of sintering additives on the low-temperature sintering and microwave dielectric properties of $Mg_4Nb_2O_9$ dielectric ceramics were studied. When $3{\sim}20wt%$ of $0.242Bi_2O_3-0.758V_2O_5$ was added, the sintering temperature decreased from $1100{\sim}1300^{\circ}C$ to $950^{\circ}C$ and high density was obtained. When $Mg_4Nb_2O_9$ was sintered at $950^{\circ}C$ with 10wt% of sintering additive, the microwave dielectric properties of $Q{\times}f_0\;=\;80.035GHz,\;\epsilon_r\;=\;13.3\;and\;\tau_f\;=\;-12.9\;ppm/^{\circ}C$ were obtained.

  • PDF