• Title/Summary/Keyword: Sintering Atmosphere

Search Result 439, Processing Time 0.022 seconds

On the study of $AlSiCa(Al_2O_3-SiC-C)$ refractories: (II) Oxidation and sintering of the synthesized powders ($AlSiCa(Al_2O_3-SiC-C)$계 내화물 재료에 관한 연구:(II) 합성원료의 산화 및 소결 특성)

  • Shim, Kwang-Bo;Joo, Kyoung;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.481-486
    • /
    • 1997
  • It was succeeded in synthesizing the $Al_2O_3$-SiC refractory powders, which is main raw material of AlSiCa, from the domestic Hadong Kaolin. The oxidation reaction of the synthesized $Al_2O_3$-SiC powder was examined. The activation energy for SiC in $Al_2O_3$-SiC powder was calculated to be $\Delta$G=74.86 KJ/mol in air, however the poor sinterability of the powders is thought to be due to the vaporization of SiC in $H_2$ atmosphere. The formation of the whisker-SiC gives the possibility in use for high temperature structural material over high temperature refractory brick.

  • PDF

Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics (탄소섬유강화 질화규소 세라믹스의 마찰마모 특성)

  • Park Yi-Hyun;Yoon Han-Ki;Kim Bu-Ahn;Park Won-Jo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process (슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향)

  • Choi, Jin Ho;Jeong, Eun-Mi;Park, Dahee;Yang, Sangsun;Hahn, Yoo-Dong;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

Effects of Carbon Fiber Arrangement on Properties of LSI Cf-Si-SiC Composites (탄소섬유 배열이 LSI Cf-Si-SiC 복합체의 특성에 미치는 영향)

  • Ji, Young-Hwa;Han, In-Sub;Kim, Se-Young;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.561-566
    • /
    • 2008
  • Carbon fiber fabric-silicon carbide composites were fabricated by liquid silicon infiltration (LSI) process. The porous two-dimensional carbon fiber fabric performs were prepared by 13 plies of 2D-plain-weave fabric in a three laminating method, [0/90], [${\pm}45$], [$0/90/{\pm}45$] lay-up, respectively. Before laminating, a thin pyrolytic carbon (PyC) layer deposited on the surface of 2D-plain weave fabric sheets as interfacial layer with $C_3H_8$ and $N_2$ gas at $900^{\circ}C$. A densification of the preforms for $C_f-Si-SiC$ matrix composite was achieved according to the LSI process at $1650^{\circ}C$ for 30 min. in vacuum atmosphere. The bending strength of the each composite were measured and the microstructural consideration was performed by a FE-SEM.

Effect of Additives of Sintering and Mechanical Properties of $Si_3 N_4$ Bonded SiC ($Si_3 N_4$ 결합 SiC의 소결과 기계적 특성에 미치는 첨가제의 영향)

  • Baik, Yong-Hyuck;Shin, Jong-Yoon;Jung, Jong-In;Han, Chang
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.511-516
    • /
    • 1992
  • In this study, SiC powder and Si powder were used as the raw materials. Mixture was prepared with addition of Al2O3 and Fe2O3 at 0.1~0.5wt% respectively. After this step, the mixture was pressed and nitrided for 30 hrs at 140$0^{\circ}C$ under NH3-N2 atmosphere. Mechanical properties of sintered specimens were investigated from measurement of porosity, bulk density and three point bending test. nitration reaction extent was observed at the change of mass before and after reaction, and the microstructure and the change of $\alpha$-Si3N4 and $\beta$-Si3N4 were observed by XRD and SEM. In the current work, the results are as follows 1. When Fe2O3 added, the nitridation increased with the content of Fe2O3, and the bending strength was increased from 0.1 wt% to 0.3 wt%, and decreased to 0.5 wt%. 2. When Al2O3 added, the nitridation and the bending strength increased little by little with the content of Al2O3 3. The bending strength of the specimen added with Fe2O3 were higher than that with Al2O3. Because the specimens contained Fe2O3 had much more the whisker type crystal of Si3N4 contributing to strength than contained Al2O3.

  • PDF

Influence of Ag nano-powder additions on the superconducting properties of Mg $B_2$ materials

  • K. J. Song;Park, S. J.;Kim, S. W.;Park, C.;J. H. Joo;Kim, H. J.;J. K. Chung;R. K. Ko;H. S. Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.6-10
    • /
    • 2003
  • Silver nano-powder was added to Ma $B_2$ to make (Ag)$_{(x)wt.%}$(Mg $B_2$)$_{(l00-x)wt.%}$ (A $g_{x}$-Mg $B_2$) (10 $\leq$ x $\leq$ 50) composite superconductors to investigate the effect of the Ag nano-powder on the vortex pinning. Pellets made out of the mixed powder were put inside stainless steel tubes, which were sintered at 85$0^{\circ}C$ in Ar atmosphere. No impurity phase was identified for as-rolled samples. However, both the Mg $B_2$ and the A $g_{x}$-Mg $B_2$ composite pellets, when sintered, contain small amount of Mg $B_4$ and MgAg impurity phases. From the magnetization study, it was found that the flux pinning was improved in the high magnetic field region (> 3 T) only when 10w/o Ag was added to Mg $B_2$. The "two step" structures in ZFC M(T) curve gradually increased as the amount of Ag added increased. Pinning centers can be created by adding a suitable amount of Ag nano-powder which is not too large to increase the decoupling between the Mg $B_2$ grains.crease the decoupling between the Mg $B_2$ grains.

Synthesis of Pyrochlore in the System of Ca-Ce-Hf-Ti-O (Ca-Ce-Hf-Ti-O System에서의 파이로클로어 합성)

  • ;;;S. V. Yudintsev
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.375-381
    • /
    • 2004
  • Pyrochlore was known as one of the most promising materials for the immobilization of radioactive actinide. This study includes the synthesis, phase relation and characteristics of pyrochlores (CaCeH$f_xTi_{2-x}O_7$=0.2, 0.6, 1.0, 1.4, 1.8, 2.0) in the system of Ca-Ce-Hf-Ti-O. The samples were prepared from high purity of starting materials under the pressure of 400kg/cm$^2$ at room temperature, and were sintered at 1200∼1$600^{\circ}C$ The synthesized samples were analyzed and identified with XRD. The optimal formation conditions of pyrochlores were at 1300∼150$0^{\circ}C$ under $O_2$ atmosphere with batch compositions. During synthesis, pyrochlore, perovskite and $A_{2}BO_{5}$ oxide were formed. The characteristics of this system is that parameter of pyrochlore was increased with the content of hafnium. This phenomenon was due to the difference of ionic size between hafnium and titanium in six coordinated site.

A Study on the Regeneration of Ni Catalyst for Hydrogenation(II) (수소첨가반응용 니켈 폐촉매의 활성재생에 관한 연구 (II))

  • Kim, Jung-Hun;Lee, Gun-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 1991
  • Regeneration of carbon-deposited Ni catalyst used for hydrogenation reaction was studied. Deposited carbon was removed by oxidation with various concentrations of oxygen. Activity of the catalysts was tested on aniline hydrogenation as a model reaction. When a carbon-deposited catalyst was treated under oxygen atmosphere, the specific surface area of the catalyst increased and then decreased with the increase of treatment temperature. The treatment temperature which gives maximum specific surface area increased with the decrease of oxygen concentration. Pore size of the support was decreased and sintering of nickel particles was more significant with the increase of oxygen concentration. The catalyst treated under 5 % oxygen concentration recovered its catalytic activity up to 90 % of the initial value, but the treatment under 20 % oxygen concentration gave no significant increase of the catalytic activity. Catalytic activity increased with treatment time when the catalyst was treated under 5 % oxygen concentration, but nearly constant after 1 hour.

  • PDF

Influence of Sintering Atmosphere on Microstructure and Fracture Strength of Hot-pressed $Al_2O_3$/Cu Nanocomposites (열간가압소결한 $Al_2O_3$/Cu 나노복합재료의 미세조직 및 파괴강도에 미치는 소결분위기의 영향)

  • 오승탁;강계명;최종운
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.222-222
    • /
    • 2003
  • 나노크기 금속입자가 분산된 세라믹 나노복합재료는 향상된 기계적 특성과 함께 독특한 전기적, 자기적 특성을 보여주어 새로운 기능성 재료로의 응용가능성을 갖고 있다. 그러나 소결 중의 반응이나 입자성장 등으로 형성된 반응상 또는 조대한 입자상이 세라믹 기지의 입계 등에 존재한다면, 나노크기 금속상 분산에 의한 기계적 특성의 향상과 독특한 기능성 부여라는 장점들이 없어지게 된다. 따라서 요구되는 특성을 구현할 수 있는 금속분산 나노복합재료의 제조를 위해서는 미세조직 제어를 위한 최적의 제조공정 확립과 미세조직과 특성 등의 관계에 대한 연구가 요구된다. 본 연구에서는 기지상으로 A1$_2$O$_3$를, 분산상으로는 저융점 금속이며 일반적인 A1$_2$O$_3$의 가압소결시에 (약 140$0^{\circ}C$) 액상으로 존재하는 금속 Cu를 선택하여 조성이 5 vol% Cu가 되도록 복합재료를 제조하였다. $Al_2$O$_3$와 CuO 원료분말들은 습식 및 건식 볼 밀링을 통하여 균일한 분말혼합체로 제조되었다. 혼합분말은 열간가압소결기 내에 장입한 후 35$0^{\circ}C$에서 30분 동안 H$_2$가스를 흘려주며 CuO를 Cu로 환원 처리하였다. 계속해서 H$_2$분위기를 유지하며 승온한 후, 각각 1000-145$0^{\circ}C$에서 분위기를 Ar 으로 치환하였다. 소결은 145$0^{\circ}C$에서 30 ㎫의 압력으로 1시간동안 행하였다 소결한 시편들은 직사각형 형태로 가공하였으며 표면은 0.5$\mu\textrm{m}$의 다이아몬드 입자로 연마하였다. XRD, SEM 및 TEM을 이용하여 상분석 및 미세조직관찰을 행하였다. 파괴강도는 3중점 굽힘 법으로 (3-point bending test) 측정하였다. 이때 시편 하부의 지지 점간의 거리는 30mm, cross-head 속도는 0.5 mm/min으로 하였고 5개의 시편을 측정하여 평균값을 구하였다.

  • PDF

A Study on Electrical, Optical Properties of GZO Thin Film with Target Crystalline (GZO 타겟 결정성에 따른 박막의 전기적 광학적 특성)

  • Lee, Kyu-Ho;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • In this research, we prepared Ga doped zinc oxide(ZnO:Ga, GZO) targets each difference sintering temperature $700^{\circ}C$, $800^{\circ}C$, and doping rate 1 wt.%, 2 wt.%, 3 wt.%. The characteristics of thin film on glass substrates which deposited by facing target sputtering in pure Ar atmosphere are reported. Ga doped zinc oxide film is attracted material through low resistivity, high transmittance, etc. When prepared target powder's structure was investigated by scanning electron microscope, densification and coarsening by driving force was observed. For each ZnO:Ga films with a $Ga_2O_3$ content of 3 wt.% at input power of 45W, the lowest resistivity of $9.967{\times}10^{-4}{\Omega}{\cdot}cm$ ($700^{\circ}C$) and $9.846{\times}10^{-4}{\Omega}{\cdot}cm$ ($800^{\circ}C$) was obtained. the carrier concentration and mobility were $4.09{\times}10^{20}cm^{-3}$($700^{\circ}C$), $4.12{\times}10^{20}cm^{-3}$($800^{\circ}C$) and $15.31cm^2/V{\cdot}s(700^{\circ}C)$, $12.51cm^2/V{\cdot}s(800^{\circ}C)$, respectively. And except 1 wt.% Ga doped ZnO thin film, average transmittance of these samples in the range 350-800 nm was over 80%.