• Title/Summary/Keyword: Sintered density

Search Result 1,250, Processing Time 0.039 seconds

Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응)

  • Shim, Joong-Pyo;Park, Yong-Suk;Lee, Hong-Ki;Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.992-998
    • /
    • 1996
  • The $La_{0.8}Ca_{0.2}CoO_3$ prepared by a citrate process was shown to have higher oxygen reduction current density and specific activity than $LaCoO_3$, $La_{0.6}Ca_{0.4}CoO_3$. In the cyclic voltammogram, an oxygen desorption peak of a $La_{0.8}Ca_{0.2}CoO_3$+carbon electrode was larger than that of a only carbon electrode. $La_{0.8}Ca_{0.2}CoO_3$ sintered at $900^{\circ}C$ for 5 hours was shown high oxygen reduction current density because of the particle size distribution and sintering effect.

  • PDF

Physical and Microwave Dielectric Properties of the MgO-SiO2 System

  • Yeon, Deuk-Ho;Han, Chan-Su;Key, Sung-Hoon;Kim, Hyo-Eun;Kang, Jong-Yun;Cho, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.550-554
    • /
    • 2009
  • Unreported dielectrics based on the binary system of MgO-SiO$_2$ were investigated as potential candidates for microwave dielectric applications, particularly those demanding a high fired density and high quality factors. Extensive dielectric compositions having different molar ratios of MgO to SiO$_2$, such as 2:1, 3:1, 4:1, and 5:1, were prepared by conventional solid state reactions between MgO and SiO$_2$. 1 mol% of V$_2$O$_5$ was added to aid sintering for improved densification. The dielectric compositions were found to consist of two distinguishable phases of Mg$_2$SiO$_4$ and MgO beyond the 2:1 compositional ratio, which determined the final physical and dielectric properties of the corresponding composite samples. The increase of the ratio of MgO to SiO$_2$ tended to improve fired density and quality factor (Q) without increasing grain size. As a promising composition, the 5MgO.SiO$_2$ sample sintered at 1400 $^{\circ}C$ exhibited a low dielectric constant of 7.9 and a high Q $\times$ f (frequency) value of $\sim$99,600 at 13.7 GHz.

Properties of Electro-Conductive SiC-TiB2 Composites (도전성 ${\beta}-SiC-TiB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Park, Mi-Lim;Song, Joon-Tae;Yim, Seung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.72-75
    • /
    • 2000
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering were investigated, The ${\beta}-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 4, 8, 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 97% of the theoretical density and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. But the fracture toughness showed the highest of $7.0MPa{\cdot}m^{1/2}$ for composites added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest of $1.59\times10^{-3}\Omega{\cdot}cm$ for composite added with 8wt% $Al_2O_3+Y_2O_3$ additives at room temperature and is all positive temperature coefficient resistance(PTCR} against temperature up to $700^{\circ}C$.

  • PDF

Microstructure and Microwave Dielectric Properties of Glass $(La_2O_3-B_2O_3-TiO_2)$/Ceramic Composites ($(La_2O_3-B_2O_3-TiO_2)$ 세라믹 조성에서의 미세 조직 과 마이크로 유전체 특성)

  • Jung, Byung-Hae;Hwang, Seong-Jin;Han, Tae-Hee;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.138-138
    • /
    • 2003
  • Low temperature co-fired ceramic (LTCC) technology offers significant benefits over the other established packaging technologies for high density, high microwave frequency, and fast signal application. Most conventional electroceraramics do not meet the basic requirements in respect of sinterability for LTCC technology. Attention is, therefore, focused on the role of glasses because of the capability they supply with lower sintering temperatures. In this study, commercial ceramic (MBRT-90) in the system BaO-N $d_2$ $O_3$-Ti $O_2$ (BNT: 40 ~ 80 wt%) and L $a_2$ $O_3$- $B_2$ $O_3$-Ti $O_2$ glass (LBT;60 ~ 20 wt%) were prepared. These glass/ceramic composites were evaluated for sintering behavior, phase evaluation, densities, interface reaction, crystallinity, microstructure and microwave dielectric properties. It was found that the addition LBT glass frits significantly lowered the sintering temperature to below 90$0^{\circ}C$ and as temperature increased (750~90$0^{\circ}C$) densification developed dynamically which was meant to be as over 95% of relative density. It is supposed that in the microstructure, the grain size was increased accompanying with the formation of different phases such as LaB $O_3$ and Ti $O_2$ under the condition of increasing sintering temperature. The sintered bodies represented applicable dielectric properties, namely 20 ~ 40 for $\varepsilon_{{\gamma}}$, ~ 10000 GHz for Q* $f_{0}$ and 10~80 ppm/$^{\circ}C$ for $\tau$$_{f}$. The results suggest that the composite is one of feasible candidates for the microwave use in LTCC technology.y.e use in LTCC technology.y.

  • PDF

Peculiarities of ReBaCuO superconductor preparation

  • Fan, Zhanguo;Soh, Dea-Wha;Li, Ying-Mei;Park, Jung-Cheol;Korobova, N
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.913-916
    • /
    • 2001
  • From 1994 the cooperation between NEU of China and MJU of South Korea for study of ReBaCuO (Re=Rare earth elements) superconductors has been carried out. The progress has been got in following projects. Critical current density ($J_c$) of YBaCuO superconductor prepared by Melting Textured Growth (MTG) was improved. In the preparation of textured YBaCuO, 20 wt.% of YBaCuO 211 phase was added, which would be climactic for the microcracks in the textured YBaCuO. The effects of the 211 phase and Ag content on the superconductivity were studied and discussed in detail. The improved $J_c$ value was reached to 8$\times$10^4 A/cm^2 (77K,0T). Single phase $YbBa_{2}Cu_{3}O_{x}$ superconductor was sintered by the traditional powder metallurgical method, and its reaction process was studied. In recent years, NdBaCuO superconductor is being performed. The behavior of $Nd_{4}Ba_{2}Cu_{2}O_{10}$(Nd422 phase) and the solid solubility, x in the superconductor $Nd_{1+x}Ba_{2-x}Cu_{3}O_{y}$ by the heat treatment in the low oxygen partial pressure (1%) or Ar at $950{\circ}C$ were investigated. The zone-melting process was used to make oriented NdBaCuO superconductor in order to increase the critical current density.

  • PDF

Characteristic of Iron Oxide and the Magnetic Properties of Sr-ferrite by Roasting Temperature of Iron Oxide (산화철 배소에 따른 분체 특성 및 Sr-ferrite 자석의 소결 특성)

  • Jang Se-Dong
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.19-25
    • /
    • 2003
  • This experiment was carried out to examine the effect of iron oxide roasting for Sr-ferrite magnet. Chloride content was decreased with raising the 2 nd roasting temperature of iron oxide for ruthner process iron oxide. The optimization temperature for roasting of ruthner process iron oxide was around $800^{\circ}C$ as average particle size 1.5∼1.9 $\mu\textrm{m}$, apparent bulk density 1.4 g/$m\ell$ and chloride content 0.05%. The relation between Br and HcJ by sintering temperature for Sr-ferrite magnet was found to be Br≒-0.258HcJ+494. In case of having a vibrating disk mill for the ruthner process iron oxide, the magnetic properties were Br 421 mT and HcJ 251 kA/m.

Microstructural properties of Pt-doped $YBa_{2}Cu_{3}O_{7-x}$ high $T_c$ superconductor prepared by melting method.

  • Song, Jin-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.16-16
    • /
    • 1992
  • We have studied the effect of platinum addition on the supercon ducting properties of YB $a_2$C $u_3$$O_{7-x}$ (123) compound and elucidated the mechanism of fine dispersion of $Y_2$BaCu $O_{5}$(211) particles in YB $a_2$C $u_3$$O_{7-x}$ superconductor prepared by melting method from the metallurgical point of view. In this study, BaCu $O_2$ and CuO-rich phase unreacted during the peritecitc reaction markedly decreased by the 211 powder addition. The 211 particle of Pt-fee sintered samples exhibited 8~10$\mu$m in size, but in 1wt%Pt-added sample, 211 particles were finely dispersed in 123 matrix and the size of 211 particle was about 1~2$\mu$m. And, the critical temperature( $T_{c. zero}$) of Pt doped samples was 91.5K and the transport critical current density ( $J_{c}$) of Pt-doped samples was much more than 10$^4$A/$\textrm{cm}^2$. The high $J_{c}$ and fine dispersion of 211 particles of Pt doped YB $a_2$C $u_3$$O_{7-x}$ superconductor are attributed to $Ba_4$CuP $t_2$ $O_{8}$ compounds formed during the partial melting, which were considered als nucleation sites of 211 particles, rather than Pt inself.han Pt inself.

  • PDF

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Effect of heat treatment and sintered microstructure on electrical properties of Mn-Co-Ni oxide NTC thermistor for fuel level sensor (연료액위센서용 Mn-Co-Ni 산화물계 서미스터의 전기적 특성에 미치는 열처리 및 소결미세구조에 관한 연구)

  • 나은상;백운규;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.88-92
    • /
    • 2003
  • The correlationship between heat treatment condition and electrical properties of the Mn-Co-Ni oxide NTC thermistor for fuel level sensor was investigated by the X-ray diffractometry, density measurement, and electrical properties measurement such as resistivity, B constant, and thermal dissipation constant. It was shown that the heat treatment of NTC thermistor was responsible for sinterability of Mn-Co-Ni oxide. The highest density of 5.10 g/㎤ was obtained at $1250^{\circ}C$, 2 hours, at which the densification was almost completed. This is also manifested from the microstructural observation. It is found that the electrical resistivity and B constant are increased at the elevated sintering temperatures. The NTC specimens prepared in this study showed the conventional decrease of resistance with the measured temperature and the linear behavior of output voltage with fuel levels. Therefore, the electrical properties of thermistor were closely correlated with sintering condition. and the Mn-Co-Ni oxide thermistor prepared in this study has a great possibility enough to apply for an automobile fuel level sensor.

A Study on the Reaction -Bonding and Gas Pressure Sintering of Si Compact made by Pressureless Powder Packing Method (무가압 분말 충전 성형법에 의해 제조된 Si 성형체의 반응 소결과 가스압 소결에 관한 연구)

  • 박정현;강민수;백승수;염강섭
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1414-1420
    • /
    • 1996
  • Using Si powder with average particle size of 8${\mu}{\textrm}{m}$ Si compacts were formed by pressureless powder packing method. The compacts were reaction bonded at 1350, 140$0^{\circ}C$ for 3~35 hrs under N2/H2 atmosphere and its microstructures were examined. Reaction bonded silicon nitrides showed nitridation of 90% and relative density of 88% After the impregnation of 5wt% MgO as sintering additive using aqueous solution of Mg nitrate the Si compacts were reaction bonded at 140$0^{\circ}C$ for 15hrs. The reaction bonded bodies were gas pressure sintered at 180$0^{\circ}C$ 190$0^{\circ}C$ 200$0^{\circ}C$ for 150, 300min. They showed relative density of 95% bending strength of 600MPa and fracture toughness of 6 MPa.m1/2.

  • PDF