• Title/Summary/Keyword: Sintered density

Search Result 1,250, Processing Time 0.027 seconds

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.

Magnetic Characteristics of YIG ferrites with Sintering Temperature (소결온도에 따른 YIG 페라이트의 자기적 특성)

  • 양승진;윤종남;최우석;김정식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • Microstructural and electromagnetic properties of YIG ferrites, (Y, Ca)-(Fe, V, In, Al)-O for Isolator/Circulator were investigated with the sintering temperature. YIG ferrites of $Y_{2.1}Ca_{0.9}Fe_{4.4}V_{0.5}In_{0.05}Al_{0.05}O_{12}$ were fabricated by sintering at $1300^{\circ}C$, $1330^{\circ}C$, $1350^{\circ}C$, $1370^{\circ}C$. Crystallographic and microstructural properties were measured using XRD and SEM. Saturation magnetization$(4{\pi}M_s)$ were measured using VSM, and FMR(Ferromagnetic Resonance) experiment was conducted to measure ferromagnetic resonance line width$({\Delta}H)$. Microwave characteristics of YIG ferrites were measured using a Network Analyzer. The YIG ferrite of $Y_{2.1}Ca_{0.9}Fe_{4.4}V_{0.5}In_{0.05}Al_{0.05}O_{12}$, sintered at $1350^{\circ}C$, showed higher density, saturation magnetization and lower ferromagnetic resonance line width than those sintered at any other temperature.

  • PDF

Mechanical Properties of Bulk Amorphous Ti50Cu20Ni20Al10 Fabricated by High-energy Ball Milling and Spark-plasma Sintering

  • Nguyen, H.V.;Kim, J.C.;Kim, J.S.;Kwon, Y.J.;Kwon, Y.S.
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.358-362
    • /
    • 2009
  • Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ quaternary amorphous alloy was prepared by high-energy ball milling process. A complete amorphization was confirmed for the composition of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ after milling for 30hrs. Differential scanning calorimetry showed a large super-cooled liquid region ($\Delta$T$_x$ = T$_x$ T$_g$, T$_g$ and T$_x$: glass transition and crystallization onset temperatures, respectively) of 80 K. Prepared amorphous powders of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ were consolidated by spark-plasma sintering. Densification behavior and microstructure changes were investigated. Samples sintered at higher temperature of 713 K had a nearly full density. With increasing the sintering temperature, the compressive strength increased to fracture strength of 756 MPa in the case of sintering at 733 K, which showed a 'transparticle' fracture. The samples sintered at above 693 K showed the elongation maximum above 2%.

Thermoelectric Properties of the (Pb$_{1-x}$Sn/$_{x}$)Te Sintered by AC Applied Hot Pressing (AC 통전식 Hot Press 법에 의해 제조된 (Pb$_{1-x}$Sn/$_{x}$)Te 열전반도체의 물성)

  • 신병철;황창원;오수기;최승철;백동규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.1-5
    • /
    • 2000
  • Properties of AC applied hot pressed ($Pb_{1-x}Sn_{x}$) Te thermoelectrics were investigated. Mechanical alloying process used to produce alloyed powder to reduce the inhomogeneity and to avoid vaporization of constituents. It showed an increase in the mechanical alloying time with increasing of Sn contents in ($Pb_{1-x}Sn_{x}$)Te. ($Pb_{1-x}Sn_{x}$)Te were sintered at 873 to 923K for 1-4 minutes, under 150 kgf/$\textrm{cm}^2$ by AC applied hot pressng method. The short sintering time of AC applied hot pressing process could reduce the vaporization of Te. The density of ($Pb_{1-x}Sn_{x}$) Te was more dependent on the sintering temperature than the sintering time. The p-n transition was observed at x=0.1 but only p type conduction behavior was observed at more than 20 mol% of Sn compositions. The maximum value of Seebeck coefficient is 250 $\mu$V/K for x=0.2 at 500K. As the amount of Sn increases, the peak value of Seebeck coefficient drops and shifts to higher temperature and the peak value of electrical conductivity decreased with increasing temperature.

  • PDF

Microstructure of alumina-dispersed Ce-TZP ceramics (알루미나가 분산된 세리아 안정화 지르코니아 세라믹스의 미세구조)

  • 김민정;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • Microstructural evolutions in ceria-stabilized zirconia (Ce-TZP) and alumina-dispersed Ce-TZP ceramics were investigated as functions of doping and annealing conditions. All of sintered specimens showed the relative density over 99 %. Sintered specimens had linear grain boundaries and normal grain shapes, but ceria-doped specimens had irregular grain shapes and nonlinear grain boundaries due to the diffusion-induced grain boundary migration during annealing at $1650^{\circ}C$ for 2 h. Mean grain boundary length of Ce-TZP with irregular grain shapes was higher than that of normal grain shapes, and was a value of 23pm at the maximum. Alumina particles dispersed in Ce-TZP inhibited the grain growth of zirconia particles. $Al_2O_3$Ce-TZP doped with ceria and annealed at $1650^{\circ}C$ for 2 h showed irregular grain shapes as well as small grain size. Added alumina particles showed the grain growth during sintering or annealing, and they changed the position from grain boundary to inside of the grains during the annealing. The specimens with normal grain shapes showed an intergranular fracture mode, whereas the specimens with irregular grain shapes showed a transgranular fracture mode during the crack propagation.

  • PDF

Microwave Dielectric Properties of Low Temperature Fired (${Pb_{0.45}}{Ca_{0.55}}$) [(${Fe _{0.5}}{Nb_{0.5}}$)$_{0.9}{Sn_{0.1}}$]$O_3$Ceramics with Various Additives

  • Ha, Jong-Yoon;Park, Ji-Won;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.597-601
    • /
    • 2001
  • The effect of CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$) [(F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$(PCFNS) were investigated. The PCFNS ceramics were sintered at 11$65^{\circ}C$. To decrease the sintering temperature for using as a low-temperature co-firing ceramics (LTCC), CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$were added to the PCFNS. As the content of CuO increased, the sintered density and dielectric constant increased and the temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. When the CuO-B $i_2$ $O_3$were added, dielectric properties were $\varepsilon$$_{r}$ of 83, Q. $f_{0}$ of 6085 GHz, and $\tau$$_{f}$ of 8ppm/$^{\circ}C$ at a sintering temperature of 100$0^{\circ}C$. The relationship between the microstructure and properties of ceramics was studied by X-ray diffraction and scanning electron microscopy.icroscopy.y.icroscopy.y.

  • PDF

A Study of Ceria on Low-temperature Sintering Using Sintering Aids for Solid Oxide Fuel Cells (소결 조제를 이용한 고체산화물 연료전지용 세리아 전해질의 저온소결 특성 연구)

  • Oh, Chang Hoon;Song, Kwang Ho;Han, Jonghee;Yoon, Sung Pil
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.280-288
    • /
    • 2014
  • SDC (Samarium doped Ceria) electrolyte was developed for Intermediate temperature SOFC ($500^{\circ}C-800^{\circ}C$) which showed a good electrical conductivity. In this study, we used sintering aids to reduce the SDC sintering temperature down to $1000^{\circ}C$, especially which can help the SOFC scale-up. In order to reduce the SDC sintering temperature, $Li_2CO_3$ and $TiO_2$ were used as a sinering aids for decreasing sintering temperature. $Li_2CO_3$ and $TiO_2$ doped SDC sintered at $1000^{\circ}C$ showed 99% of the theoretical density and higher electrical conductivity than the pure SDC sintered at $1500^{\circ}C$. When measuring the OCV (Open circuit voltage) with the $Li_2CO_3$ and $TiO_2$ doped SDC electrolyte, however, the OCV values were lower than the theoretical OCV values which means that the modified SDC still had electronic conductivity.

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

A Study of Middle Infrared Transparent Properties of ZnS Ceramics by the Change of Micro Structure (미세 구조 변화에 따른 ZnS 세라믹의 중적외선 투과 특성 연구)

  • Park, Chang-Sun;Yeo, Seo-Yeong;Kwon, Tae-Hyeong;Park, Woon-ik;Yun, Ji-Sun;Jeong, Young-Hun;Hong, Youn-Woo;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.722-727
    • /
    • 2017
  • Transparent ZnS ceramics were synthesized by hydrothermal synthesis ($180^{\circ}C$ for 70 h), and were sintered by a hot press process at $950^{\circ}C$. To confirm the optical properties of the ZnS ceramics after sintering for various sintering holding times, we performed X-ray diffraction analysis, scanning electron microscopy, and Fourier-transform-infrared spectroscopy. The ZnS nanopowders was found to be single-phase (cubic) without any hexagonal phase. However, the hexagonal phase is formed and increases in content with increasing sintering holding time. The density of the ZnS ceramics was above 99.7%, except for the unsintered one. The ZnS ceramics showed high transmittance (~70%) when sintered for more than 2 h.

Structural and Microwave Dielectric Properties of the $Mg_5B_4O_{15}$ (B=Ta, Nb) Ceramics with Sintering Temperature (소결온도에 따른 $Mg_5B_4O_{15}$ (B=Ta, Nb)세라믹스의 구조 및 마이크로파 유전특성)

  • Lee, Sung-Jun;Kim, Jae-Sik;Lee, Sung-Gap;Lee, Young-Hie
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.556-560
    • /
    • 2007
  • In this study, both structural and microwave dielectric properties of the $Mg_5B_4O_{15}$ (B=Ta, Nb) cation-deficient perovskite ceramics with sintering temperature were investigated. All sample of the $Mg_5B_4O_{15}$ (B=Ta, Nb) ceramics were prepared by the conventional mixed oxide method and sintered at $1400^{\circ}C{\sim}1500^{\circ}C$. The bulk density and quality factor of the $Mg_5B_4O_{15}$ (B=Ta, Nb) ceramics were increased with increasing sinterning temperature in the range of $1400^{\circ}C{\sim}1450^{\circ}C$, but these were decreased the sintering temperature of above $1450^{\circ}C$. The dielectric constant of the $Mg_5Ta_4O_{15}$ ceramics was increased continuously with increasing sintering temperature. And the dielectric constant of the $Mg_5Nb_4O_{15}$ ceramics was increased in as the sintering temperature increasesfrom $1400^{\circ}C{\sim}1450^{\circ}C$ but was decreased at the temperatures above $1475^{\circ}C$. In the case of the $Mg_5Ta_4O_{15}\;and\;Mg_5Nb_4O_{15}$ ceramics sintered at $1450^{\circ}C$ for 5h, the dielectric constant, quality factor, and temperature coefficient of the resonant frequency (TCRF) were 8.2, 259,473 GHz, $-10.91ppm/^{\circ}C$ and 14, 37,350 GHz, $-52.3ppm/^{\circ}C$, respectively.