• Title/Summary/Keyword: Sintered density

Search Result 1,250, Processing Time 0.029 seconds

Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier (초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향)

  • Chung, Doug-Young;Lee, Bong-Han;Jung, Jae-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • In this investigation, we observed surface morphology and porosity of a macroporous adsorbent made of Na-bentonite and Ca-bentonite as structure formation materials and grounded waste paper as macropore forming material for the development of a permeable reactive barrier to remove heavy metals in groundwater. Therefore, we selected minerals having higher cation exchange capacity among 2:1 clay minerals and other industrial minerals because sintering can significantly influence cation exchange capacity, resulting in drastic decrease in removal of heavy metals. The results showed that the increasing sintering temperature drastically decreased CEC by less than 10 % of the indigenous CEC carried by the selected minerals. One axial compressibility test results showed that the highest value was obtained from 5% newspaper waste pulp for both structure formation materials of Na-bentonite and Ca-bentonite although there were not much difference in bulk density among treatments. The pore formation influenced by sintering temperature and period contributes removal of heavy metals passing through the sintered macroporous media having different water retention capacity.

Fabrication of functionally graded materials of hydroxyapatite and zirconia (수산화아파타이트와 지르코니아의 경사기능 재료의 제조)

  • 김성진;조경식;박노진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.115-119
    • /
    • 2001
  • Hydroxyapatite-yttria stabilized zirconia bioceramics containing fine zirconia particles were prepared as 3-layered functionally graded materials (FGMs) using a spark plasma sintering (SPS) and hot pressing (HP) apparatuses. The pretreatment of the raw hydroxyapatite promoted the sinterability of hydroxyapatite. The maximum density of pretreated FGM composites could be obtained at lower temperature than that for he untreated FGM samples. No decomposition from hydroxyapatite to three calcium phosphate (TCP) was observed in FGMs of HAp-$ZrO_2$ sintered below $1200^{\circ}C$ for 8 min under 10 MPa by SPS. However, the transformation of the tetragonal zirconia to the cubic modification had occurred in FGMs at this temperature. The presence of zirconia i.e. stress induced transformation of zirconia may be expected to enhance the mechanical properties of HAp-$ZrO_2$ FGM. The SPS is concluded as a better method to fabricated the FGM with dense and high strength compared with HP process.

  • PDF

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Acrylamide Polymerization on ceramic Powders(I) : The Process Control of Si2N4 Gelcasting by Polymerization of Acrylamicde (세라믹분체 표면에서 아크릴아마이드 중합(제1보) : 아마이드 고분자중합에 의한 질화규소 겔캐스팅 공정제어)

  • 류병환;김은영;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.178-185
    • /
    • 1999
  • For the process control of silicon nitride gelcasting, the composition effect of acryamide system on the viscosity of slip and mechanical property of gelcast green body were investigated. The slip was prepared by ball milling of silicon nitride suspension prepared with acrylamide monomer and polyelectrolyte dispersant after premixing them by attritor. The slip mixed with initiator was vacuum deaired and cast into molds, and then polymerized. The consolidated green body was obtained by drying the gelated slip. The viscosity measument and the diametral compression test was done to evaluate the rheological behaviro of slip and mechanical property of gelcast body, respectively. Experimental results showed that the high solid loading of silicon nitride slip was obtained up to 46 vol% with a low viscosity. The mechanical property of gelcast body mainly increased with increasing the concentration of monomer. The gelcast body was machinable above the ∼3 MPa of tensile strength. The relative density of pressured-sintered body was 98.5% at 1760$^{\circ}C$, 3 h.

  • PDF

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.

Mechanical properties of $B_4C$ ceramics fabricated by a spark plasma sintering process (방전플라즈마 소결법을 이용한 고밀도 탄화 붕소 제조 및 기계적 특성)

  • Kim, Kyoung-Hun;Chae, Jae-Hong;Park, Joo-Seok;Kim, Dae-Keun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • [ $B_4C$ ] ceramics were fabricated by spark plasma sintering process and their sintering behavior, microstructure and mechanical properties were evaluated. Relative density of $B_4C$ ceramics were obtained by spark plasma sintering method reached as high as 99% at lower temperature than conventional sintering method, in addition, without any sintering additives. The mechanical properties of $B_4C$ ceramics was improved by a methanol washing process which can be removed $B_2O_3$ phase from a $B_4C$ powder surface. This improvement results ken the formation of homogeneous microstructure because the grain coarsening was suppressed by the elimination of $B_2O_3$ phase. Particularly, fracture toughness of the sintered specimen using a methanol washed powder improved over 30% compared with the specimen using an as-received commercial powder.

Microwave Dielectric Properties of Ca[($Li_{1/3}Nb_{2/3}$)$_{1-x}$$Ti_{x}$]$O_{3-{\delta}}$ with $Bi_2O_3$ Additives ($Bi_2O_3$ 첨가에 의한 Ca[($Li_{1/3}Nb_{2/3}$)$_{1-x}$$Ti_{x}$$O_{3-{\delta}}$ 세라믹스의 마이크로파 유전 특성)

  • 하종윤;최지원;이동윤;윤석진;최두진;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.131-134
    • /
    • 2002
  • The effect of the addition on the densification, low temperature sintering, and microwave dielectric properties of the Ca[($Li_{1/3}Nb_{2/3}$)$_{1-x}$$Ti_{x}$]$O_{3-{\delta}}$/(CLNT) was investigated. $Bi_2O_3$ additives improved the dencification and reduced the sintering temperature from $1150^{\circ}C$ to $900^{\circ}C$ of CLNT microwave dielectric ceramics. As increasing $Bi_2O_3$ contents, the dielectric constants and bulk density were increased. The quality factor, however, was decreased slighty. The temperature coefficients of the resonant frequency shifted positive value as increasing $Bi_2O_3$ contents. The dielectric properties of Ca[($Li_{1/3}Nb_{2/3}$)$_{1-x}$$Ti_{x}$]$O_{3-{\delta}}$ and Ca[($Li_{1/3}Nb_{2/3}$)$_{0.8}Ti_{0.2}$]$O_{3-{\delta}}$ with 5wt% $Bi_2O_3$ sintered at $900^{\circ}C$ for 3h were $\varepsilon_{r}$=20, 35 Q.$f_{0}$=6500, 11,000 GHz, $\tau_{f}$=4, 13 ppm/$^{\circ}C$, respectively.

  • PDF

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 Ceramics according toPb(Ni1/3Nb2/3)O3 Substitution (Pb(Ni1/3Nb2/3)O3 치환에 따른 저온소결 Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 세라믹스의 압전 및 유전 특성)

  • Yoo Ju-Hyun;Lee Sang-Ho;Paik Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.35-39
    • /
    • 2006
  • In this study, in order to develop the multilayer piezoelectric actuator and ultrasonic resonator, PMN-PNN-PZT ceramics were fabricated by sintering with $Li_2CO_3-Na_2CO_3$ as sintering aids at $950^{\circ}C$ and their piezoelectric and dielectric characteristics were investigated as a function of PNN substitution. With increasing PNN substitution, dielectric constant(${\epsilon}_r$), electromechanical coupling factor(kp), and piezoelectric d constant($d_{33}$) were increased to $12 mol\%$ PNN substitution and then showed a tendency to decrease rapidly With increasing PNN substitution, crystal structure changed from tetragonal to rhombohedral at $12 mol\%$ PNN substitution and then secondary phase was appeared and its intensity was increased. At the $12 mol\%$ PNN substituted PMN-PZT composition ceramic sintered at $950^{\circ}C$, density, kp, $d_{33}$ and Qm showed the optimum value of $7.79 g/cm^3$, 0.599, 419 pC/N, and 894, respectively for multilayer piezoelectric actuator application.

Effect of Sintering Temperature on Electrical Properties of $Pr_{6}O_{11}$-Based ZnO Varistors ($Pr_{6}O_{11}$계 ZnO 바리스터의 전기적 성질에 소결온도의 영향)

  • 남춘우;류정선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.572-577
    • /
    • 2001
  • The electrical properties of Pr$_{6}$ O$_{11}$ -based ZnO varistors consisting of ZnO-Pr$_{6}$ O$_{11}$ -CoO-Cr$_2$O$_3$-Er$_2$O$_3$ ceramics were investigated with sintering temperature in the range of 1325~f1345$^{\circ}C$. As sintering temperature is raised., the nonlinear exponent was increased up to 1335$^{\circ}C$, reaching a maximum 70.53, whereas raising sintering temperature further caused it to decrease, reaching a minimum 50.18 and the leakage current was in the range of 1.92~4.12 $\mu$A. The best electrical properties was obtained from the varistors sintered at 1335$^{\circ}C$, exhibiting a maximum (70.53) in the nonlinear exponent and a minimum (1.92 $\mu$A) in the leakage current, and a minimum (0.035) in the dissipation factor. On the other hand, the donor concentration was in the range of (0.90~1.14)x10$^{18}$ cm$^{-3}$ , the density of interface states was in the range of (2.69~3.60)x10$^{12}$ cm$^{-2}$ , and the barrier height was in the range of 0.77~1.21 eV with sintering temperature. With raising sintering temperature, the variation of C-V characteristic parameters exhibited a mountain type, reaching maximum at 134$0^{\circ}C$. Conclusively, it was found that the V-I, C-V, and dielectric characteristics of Pr$_{6}$ O$_{11}$ -based ZnO varistors are affected greatly by sintering temperature.

  • PDF

The effect of post-annealing temperature on $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films deposited by RF magnetron sputtering (RF magnetron sputtering법에 의한 BLT 박막의 후열처리 온도에 관한 영향)

  • Lee, Ki-Se;Lee, Kyu-Il;Park, Young;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.624-627
    • /
    • 2003
  • The BLT thin-films were one of the promising ferroelectric materials with a good leakage current and degradation behavior on Pt electrode. The BLT target was sintered at $1100^{\circ}C$ for 4 hours at the air ambient. $Bi_{3.25}La_{0.75}Ti_3O_{12}$ (BLT) thin-film deposited on $Pt/Ti/SIO_2/Si$ wafer by rf magnetron sputtering method. At annealed $700^{\circ}C$, (117) and (006) peaks appeared the high intensity. The hysteresis loop of the BLT thin films showed that the remanent polarization ($2Pr=Pr^+-Pr^-$) was $16uC/cm^2$ and leakage current density was $1.8{\times}10^{-9}A/cm^2$ at 50 kV/cm with coersive electric field when BLT thin-films were annealed at $700^{\circ}C$. Also, the thin film showed fatigue property at least up to $10^{10}$ switching bipolar pulse cycles under 7 V. Therefore, we induce access to optimum fabrication condition of memory device application by rf-magnetron sputtering method in this report.

  • PDF