• Title/Summary/Keyword: Sintered AlN

Search Result 118, Processing Time 0.021 seconds

Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders (조대 Si입자분말을 사용한 질화반응 Si3N4의 치밀화 거동)

  • 이주신;문지훈;한병동;박동수;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • Effect of sintering additives on the densification behavior of reaction-bonded silicon nitride prepared by using coarse Si powders is discussed. Sintering additives such as 6 wt% $Y_2O_3$+1wt% $A1_2O_3$ (6YlA) did not give rise to full densification, while full densification was obtained by using the sintering additives such as 6wt% $Y_2O_3$+3 wt% $A1_2O_3$+ 2wt% $SiO_2$ (6Y3A2S) and 9wt% $Y_2O_3$+ 1.5wt% $A1_2O_3$+ 3wt% $SiO_2$ (9Yl.5A3S). In the case of 6Y3A2S addition, high fracture strength of 960 MPa and the fracture toughness of $6.5 MPa.m^{1/2}$ were obtained.

Growth and photocurrent properties for ZnO Thin Film by Pulsed Laser Deposition (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 특성)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.74-75
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}cm^{-3}$ and $299cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 3.3973 eV - ($2.69{\times}10^{-4}$ eV/K)$T_2$/(T + 463 K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\triangle$so definitely exists in the $\ulcorner_6$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth of ZnO thin film by pulsed laser deposition and photocurrent study on the splitting of valance band (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.160-168
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_{2}O_{3}$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_{2}O_{3}$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}1016cm^{-3}$ and $299cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=3.3973 eV-($2.69{\times}10^{-4}$ eV/K)$T^{2}$/(T+463K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{6}$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n = 1.

Growth and Effect of Thermal Annealing for ZnO Thin Film by Pulsed Laser Deposition (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 열처리 효과)

  • 홍광준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.467-475
    • /
    • 2004
  • ZnO epilayer were synthesized by the pulsed laser deposition(PLD) process on $Al_2$ $O_3$substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire(A $l_2$ $O_3$) substrate at a temperature of 400 $^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are 8.27${\times}$$10^{16}$$cm^{-3}$ and 299 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}$(T)= 3.3973 eV - (2.69 ${\times}$ 10$_{-4}$ eV/K) $T^2$(T+463k). After the as-grown ZnO epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO atmospheres has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Zn}$ , $V_{o}$ , Z $n_{int}$, and $O_{int}$ obtained by PL measurements were classified as a donors or accepters type. In addition, we concluded that the heat-treatment in the oxygen atmosphere converted ZnO thin films to an optical p-type. Also, we confirmed that vacuum in ZnO/A $l_2$ $O_3$did not form the native defects because vacuum in ZnO thin films existed in the form of stable bonds.s.s.s.

Rheological and Debinding Properties of Al2O3/Paraffin Wax/High Density Polyethylen System Mixture by Injection Molding (사출성형에 의한 Al2O3/Paraffin Wax/High Density Polyethylen계 혼합물의 유동성 및 탈지 특성)

  • 김승겸;신대용;한상목;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.395-400
    • /
    • 2004
  • The effects of compositions of binders on the rheological properties of mixtures and the preparation conditions on the formation of defects and the debinding characteristics of compacts for the injection molding of ceramic powders (65 wt% aluminaㆍ35 wt% feldspar) were studied. Ceramic powders were coated with 2 wt% of stearic acid and then mixed with 15, 20, and 25 wt% of Paraffin Wax (PW) and High Density Polyethylene (HDPE) as binders at $160^{\circ}C$ for 2 h. Rheological properties were investigated by using capillary rheometer. Apparent viscosities of mixtures were 80∼300 Paㆍs at 1,000$s^{-1}$ of a shear rate, it was good for the injection molding and depending on the compositions of binders. Short shot was formed at 15H5P5 (the ratio of HDPE : PW=5 : 5 in 15 wt% of binders) compacts without injection pressures and any noticeable defects were not formed at 45 kgf/$cm^{2}$ in 20H5P5 compacts. PW and HDPE were removed by the solvent extraction and thermal debinding method. Thermal debinding of HDPE at $450^{\circ}C$ for 5 h, which followed the extraction of PW was using n-heptane solvent at $70^{\circ}C$ for 5 h. Continuous pores in compacts, which facilitate the removal of HDPE by the thermal debinding, were found to form in the compacts when PW was removed by the solvent extraction. The optimum composition of binder at which binder was removed by thermal debinding without defects while maintaining the compact strength was 20H5P5. Bulk density, porosity and 3-point bending strength of 20H5P5 compact sintered at 1,30$0^{\circ}C$ for 5 h were 2.8, < 3%, and 2,400 kgf/$cm^{2}$, respectively, and can be used as a structural materials.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.

Hydrogen Electrode Performance with PTFE Bonded Raney Nickel Catalyst for Alkaline Fuel Cell (라니 니켈 촉매에 대한 알칼리형 연료전지용 수소극의 전극특성)

  • Lee, Hong-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.527-534
    • /
    • 1992
  • Raney nickel was used as catalyst in the hydrogen electrode for an alkaline fuel cell. The hydrogen electrode manufactured with the Raney nickel catalyst which was sintered at $700^{\circ}C$ was found to have the highest electrode performance. Using the Raney nickel powder of average particle size $90{\AA}$ for the electrode, the current density which had been measured was $450mA/cm^2$ at $80^{\circ}C$ using 6N KOH solution as an electrolyte. The effects of PTFE addition were investigated with CO-chemisorption, polarization curves and Tafel slope. CO-chemisorption had shown the optimum value when the Raney nickel was mixed with 5wt% of PTFE, but from the current density and Tafel slope at porous Raney nickel electrode, the appropriate value of PTFE addition was 10wt%. Recommendable Ni and Al portion for Raney nickel was 60 : 40 and loading amount was $0.25g/cm^2$. Also the influence of pressing pressure for manufacturing catalytic layer and for junction with gas diffusion layer was examined. The morphology of catalyst surface was investigated with SEM. The influence of reactivation time and heat-treatment temperature were also studied.

  • PDF