• 제목/요약/키워드: Sinter Forging

검색결과 16건 처리시간 0.026초

Sinter forging으로 제조한 Y-BA-Cu-O/Ag 고온 초전도 복합체의 미세조직과 특성 (A Study on the Microstructure and Properties of Y-BA-Cu-O/Ag composite High $T_{c}$ Superconductor prepared by Sinter-forging Process)

  • 박종현;김병철;송진태
    • 한국재료학회지
    • /
    • 제4권1호
    • /
    • pp.37-43
    • /
    • 1994
  • Y-BA-Cu-O계 고온초전도체의 미세조직을 가공과 열처리로써 제어하여 조직의 배향화와 치밀화를 기하여 높은 임계전류밀도($J_c$)를 갖는 초전도체의 개발을 목적으로sinter forging법으로 Y-BA-Cu-O/Ag 고온초전도복합체를 제조하였다. sinter forging을 통하여 고온 초전도체의 미세조직의 texture화를 가져왔으며, 이 경우 (123)결정립의 C축 방위가 단일축의 압축방향으로 배향화 되었다. 한편, texture의 orientation facter는 고온일수록, 압력이 클수록 크고, 조직의 배향화도 뚜렷하였으며 그에 따라 $J_c$역시 증가하였다. 이러한 결과로 미루어 결정의 배향도는 $J_c$를 좌우하는 중요한 변수라고 사려되었다. 또한 sinter forging 시킨Y-MA-Cu-O/Ag 복합체의 on set온도는 sinter forging온도에 크게 의존치 않았으나, 고온일수록 off set 온도($T_c\;^{zero}$)가 다소 떨어졌다. 한편, 첨가된 Ag는 주고(123)결정입계에 존재하였으며, 이들이 (123)결정립간의 결합을 촉진시켜 임계전류밀도를 크게 향상시켰으며, Y-BA-Cu-O/Ag 복합체의 $J_c$는 2,000 A/$\textrm{cm}^2$ 이상이었다.

  • PDF

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2749-2761
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing. Finite element results by using the proposed model also well predicted experimental data in the literature for densification behavior of nanocrystalline zirconia powder during pressureless sintering and sinter forging.

지르코니아 분말 성형체의 고온 치밀화 거동과 결정립 성장 (Densification behavior and grain growth of zirconia powder compacts at high temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1175-1187
    • /
    • 1997
  • Densification behavior and grain growth of zirconia powder compacts are investigated under high temperature. Experimental data are obtained for zirconia powder under pressureless sintering, sinter forging and hot isostatic pressing. The constitutive equations by Kwon et al. are used for diffusional creep and grain growth. The constitutive equations by McMeeking and co-workers are also included to study the effect of power-law creep. These constitutive equations are implemented into a finite element program (ABAQUS) to investigate the friction effect during sinter forging and the canning effect during hot isostatic pressing. The agreements between experimental data and finite element results are very good in pressureless sintering and hot isostatic pressing, but not as good in sinter forging.

공구강 분말 성형체의 고온 치밀화 성형공정 (High Temperature Densification Forming Process of Tool Steel Powder Compact)

  • 최학현;전윤철;김기태
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2182-2195
    • /
    • 1996
  • Densification characteristics and behavior of tool steel powder compact during high temperature forming processes were investigated under pressure less sintering, sinter forging and hot isostastic pressing. In pressureless sintering, full density was obtained at a closely controlled temperature near the solidus of the material. Finite element calculations from constitutive model for densification by power law creep and diffusional flow were compared with experimental data. Agreements between theoretical calculations and experimental data were good in hot isostatic pressing but not as good in sinter forging.

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

Innovative Materials and Production Techniques for Sinterforged PM Aluminium Components with Improved Performance

  • Neubing, Hans-Claus;Ichikawa, Junichi;Gradl, Johann
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.710-711
    • /
    • 2006
  • High strength PM aluminium alloys Al-Zn-Mg-Cu (7075 type) were studied by using commercially available powder blends and the sinter-forging technique for component production. Principal areas of focus include the response to PM processing, micro structural assessment and material properties of Aluminium sinter forged products. Green preforms are successfully sintered to near full density by solid-supersolidus liquid phase sintering. Sinter forging method can produce components with net shape and mechanical characteristics of the material have improved greatly. Properties of this new PM Al-alloy were found to be reproducible in an industrial production environment.

  • PDF

공구강 분말 성형체의 치밀화 거동과 결정립 성장에 관한 유한 요소 해석 (A Finite Element Analysis for Densification Behavior and Grain Growth of Tool Dteel Powder Compacts)

  • 전윤철
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.90-99
    • /
    • 1997
  • Densification behavior and grain growth of tool steel powder compacts during pressureless sintering, sinter forging, and hot isostatic pressing were investigated. Experimental data were compared with results of finite element calculations by using the constitutive model of Abouaf and co-workers and that of McMeeking and co-workers. Densification and deformation of tool steel powder compacts were studied by implementing power-law creep, diffusional creep, and grain growth into the finite element analysis. The shape change of a powder compact in the container during hot isostatic pressing was also studied. The theoretical models did not agree well with experimental data in sinter forging, however, agreed well with experimental data in hot isostatic pressing.

  • PDF

원호 형상을 가지는 분말자석 단조성형공정에서의 예비성형체 설계 (Preform Design for the Sinter-forging Process of Arc-shaped Powdered Magnets)

  • 김승호;이충호;허훈
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.135-142
    • /
    • 1999
  • Tube Process(TP) is one of the processes to produce permanent magnets. Advantage claimed for this process is that it can accmplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses deformable tube for densification of powder magnets. TP has, however, difficulties in manufacturing permanent magnets from Nd-Fe-B green powder due to folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding, lead magnets into almost desired final shape and get uniform densification. In this paper, preform design for TP is carried out without a deformable tube to investigate the behaviour of magnet sinter-forging. Preform design is accomplished to increase the effective magnet area with a near net shape and uniform densification.

  • PDF

알루미나 분말 성형체의 고온 치밀화 성형 공정을 위한 유한요소 해석 (Finite Element Analysis for High Temperature Densification Processing of Alumina Powder Compacts)

  • 권영삼;김기태
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.347-358
    • /
    • 1994
  • Creep densification and grain growth of alumina powder compacts during high temperature processing were investigated. The creep densification and grain growth of alumina powder compacts during various sintering processes were analyzed by employing the consitutive model by Kwon and Kim. Theoretical results from the constitutive model were compared with various experimental data of alumina powder compacts in the literature including pressureless sintering, sinter forging and hot pressing. The proposed constitutive equations were implemented into finite element analysis program (ABAQUS) to simulate densification for more complicated geometry and loading conditions. The effects of friction between die and powder compact or punch and powder compact during sinter forging and hot pressing are investigated by using the finite element method. Also, high temperature forming processing of alumina compact with complicated shape was simulated.

  • PDF