• 제목/요약/키워드: Sinter

검색결과 165건 처리시간 0.026초

The Effect of Cooling Rate on the Structure and Mechanical Properties of Fe-3%Mn-(Cr)-(Mo)-C PM Steels

  • Sulowski, Maciej;Cias, Andrzej;Frydrych, Hanna;Frydrych, Jerzy;Olszewska, Irena;Golen, Ryszard;Sowa, Marek
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.563-564
    • /
    • 2006
  • The effect of different cooling rate on the structure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at $1120^{\circ}C$ and $1250^{\circ}C$ in $H_2/N_2$ atmospheres and cooled with cooling rates $1.4^{\circ}C/min$ and $6.5^{\circ}C/min$. Convective cooled specimens were subsequently tempered at $200^{\circ}C$ for 60 and 240 minutes.

  • PDF

소결공장의 Micro Pulse 하전 제어기법에 관한 연구 (Study on the Sinter Plant Micro Pulse System of Control Algorithm.)

  • 김민호;황광호;최창호;홍영기;장성덕;손윤규;오종석;조무현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.146-150
    • /
    • 2001
  • 전기집진기는 여타의 집진 설비에 대한 집진 효율과 유지 보수성이 우수한 설비이며 소결공장의 배출분진과 같은 고온($120{\~}160^{\circ}C$)의 미세분자($5{\~}12{\mu}m$) 및 고비저항($10^{12}{\~}10^{13} {\Omega}cm$)을 포집할 때 DC 하전에 비해 Pulse 하전이 효과적이며 Energy 절감이($60{\~}90\%$) 된다. 본 논문은 소결공장의 DC 하전에서 Pulse 하전으로 전환 시 EP 특성 및 부하변화에 따른 제어방안을 제시한다. 현재 제철소의 소결 전기집진기 경우 정수 직후에는 전압이 정상적으로 공급하다가 시간이 지남에 따라서 DC 전압이 낮아지고 Back Corona 현상이 발생하여 서서히 분진농도는 급격히 상승하는 문제점을 가지고 있다. 이에 비해 Pulse 하전으로 운전할 경우에는 Back Corona 현상 발생억제로 출구농도 상승 기울기를 조장방법 및 Ramping 장치와 관련장치 등을 최적으로 운용할 수 있는 방법을 소결공장 실험하였다.

  • PDF

고 에너지 밀링 공정으로 제조된 지르콘 나노분말의 소결특성에 관한 연구 (Sintering Characteristics of Zircon Nanopowders Fabricated by High Energy Milling Process)

  • 이주성;강종봉
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.95-99
    • /
    • 2016
  • In this study, 5 um sized $ZrSiO_4$ was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure $ZrSiO_4$ itself can-not be sintered to these levels of theoretical density, but it was possible to sinter $ZrSiO_4$ powder of nano-scale size of, -0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of $ZrSiO_4$ with a size in the micron range resulted in the formation of monoclinic $ZrO_2$; however, in the nano sized range, the decomposition resulted in the tetragonal phase of $ZrO_2$. So, it was possible to improve the sintering characteristics of nano-sized $ZrSiO_4$ powders.

함철 더스트를 원료로 한 고로용 비소성 펠릿의 강도 및 환원거동 (Strength and Reduction Behaviour of Cold-bonded Pellet for Blast Furnace Burden using Iron-bearing Dust)

  • 김태동;백찬영;조종민
    • 자원리싸이클링
    • /
    • 제4권1호
    • /
    • pp.60-68
    • /
    • 1995
  • 철강공정에서 발생하는 함철더스트에 시멘트를 첨가한 비소성 더스트 펠릿을 제조하여 고로용으로서의 특성을 평가하였다. 시멘트를 10wt.% 첨가한 펠릿은 적절한 양생조건하에서 150kg/p 이상의 압축강도에 도달하였다. 더스트 펠릿은 특히 $900^{\circ}C$에서의 환원성이 우수하였는데, 이는 비소성 펠릿 중에 함유된 탄소의 직접환원 반응과 고온에서 증가된 기공 때문이다. 이외에 비소성 펠릿의 회전강도, 환원분화성 및 환원 팽창성도 철광석 소결광 및 소성 펠릿에 비교하여 우수하거나 대등한 성상을 나타내는 것을 확인하였다.

  • PDF

고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성 (Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering)

  • 박상훈;우기도;김지영;김상미
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

고온 가압 적층 소결에 의한 황화아연 세라믹스의 광학성 특성 (Optical properties of ZnS ceramics by hot press stack sintering process)

  • 박범근;백종후
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.148-153
    • /
    • 2021
  • During the manufacture of a ZnS lens with excellent transmittance in the mid-infrared region (3-5 ㎛) by the hot-press process, a single-layer sintering method is used in which one lens is manufactured in one process. Additional research is required to improve this single-layer sintering method because of its low manufacturing efficiency. To solve this problem, the variation in optical properties of ZnS lenses with change in sintering temperature was investigated by introducing a Stack sintering method that can sinter multiple lenses simultaneously. A carbon paper was placed between the molded lenses and sintered into five layers. The average permeability of 67% at medium infrared wavelengths of 3-5 ㎛ was excellent under the following sintering conditions: pressure of 50 MPa and temperature of 850℃. This value is 1% less than the average permeability in the case of single-layer sintering of the ZnS lens. It was confirmed that the stack sintering method developed in this study can be used to manufacture a large number of lenses with excellent characteristics in a single process.

초미립 WC-Graphene-Al2O3 복합재료 소결 및 기계적 성질 (Mechanical Properties and Sintering of Ultra Fine WC-Graphene-Al Composites)

  • 손인진
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.206-214
    • /
    • 2023
  • Tungsten carbide has many industrial applications due to its high electrical and thermal conductivity, high melting temperature, high hardness and good chemical stability. Because tungsten carbide is difficult to sinter, it is sintered with nickel or cobalt as a binder and is currently used in nozzles, cutting tools, and molds. Alumina is reported to be a viable binder for tungsten carbide due to its higher oxidation resistance and lower cost than nickel and cobalt. The ultrafine tungsten carbide-graphene-alumina composites were rapidly sintered in a high frequency induction heating active sintering unit. The microstructure and mechanical properties (fracture toughness and hardness) of the composites were investigated and analyzed by Vickers hardness tester and electron microscope. Since the high-frequency induction heating sintering method enables high-speed sintering, ultrafine composites can be prepared by preventing grain growth. In the tungsten carbide-graphene-alumina composites, the grain size of tungsten carbide increased with the amount of alumina participation. The hardness and fracture toughness of the tungsten carbide-5% graphene- x% alumina (x = 0, 5, 10,15) composites were 5.1, 8.6, 8.6, and 8.4 MPa-m1/2 and 2384, 2168, 2165, and 2102 kg/mm2, respectively. The fracture toughness increased without a significant decrease in hardness. Sinterability was improved by adding alumina to tungsten carbide-graphene.

무연탄(無煙炭)과 페놀수지(樹脂)의 혼합(混合)소성에 의해 제조(製造)된 함형(咸形)코크스의 강도(强度) (The influence of factors on the strength of formed coke made with anthracite and phenolic resin)

  • 이계승;송영준
    • 자원리싸이클링
    • /
    • 제17권6호
    • /
    • pp.57-61
    • /
    • 2008
  • 본 연구는 페놀수지와 무연탄을 혼합한 다음 소결하여 합금철용으로 사용 가능한 코크스를 얻기 위하여 수행 되었으며 무연탄과 페놀수지를 혼합하여 성형코크스를 제조하는 경우에 있어서 코스의 강도에 미치는 여러 인자들의 영향을 검토하여 다음과 같은 결론을 얻었다. 합금철용 코크스 제조 공정은 $35{\sim}325$ mesh로 입도 조절된 저회분 함량의 무연탄에 액상 페놀수지를 6% 정도 첨가하여 혼합한 다음 $10{\sim}50\;kgf/cm^2$로 압착하여 펠릿을 제조하고, 이 펠릿을 $50^{\circ}C$에서 6시간 이상 탈수하고 $200^{\circ}C$에서 180분 동안 경화 시킨 다음 $1200^{\circ}C$에서 6시간 소결하면 $100{\sim}150\;kgf/cm^2$인 합금철용 코스가 얻어짐을 확인하였다.

일반 형상의 2차원 영역에서의 멀티스케일 웨이블렛-갤러킨 기법 (Multiscale Wavelet-Galerkin Method in General Two-Dimensional Problems)

  • 김윤영;장강원;김재은
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.939-951
    • /
    • 2002
  • We propose a new multiscale Galerkin method based on interpolation wavelets for two-dimensional Poisson's and plane elasticity problems. The major contributions of the present work are: 1) full multiresolution numerical analysis is carried out, 2) general boundaries are handled by a fictitious domain method without using a penalty term or the Lagrange multiplier, 3) no special integration rule is necessary unlike in the (bi-)orthogonal wavelet-based methods, and 4) an efficient adaptive scheme is easy to incorporate. Several benchmark-type problems are considered to show the effectiveness and the potentials of the present approach. is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

$Li_2O-Al_2O_3-SiO_2$계 소지내에 Zircon상 형성에 따른 내열 강화 특성 (A Study on the Thermal Resistance Strength with the Formation of the Zircon Phase in LAS System)

  • 전덕일;김정욱;이응상
    • 한국세라믹학회지
    • /
    • 제29권12호
    • /
    • pp.935-941
    • /
    • 1992
  • The LAS system with good thermal properties has a narrow range of firing and sintering temperature near the melting point. So it is difficult to sinter LAS to dense sintered body. In this study, the petalite (Li2O.Al2O3.8SiO2) with good thermal properties, was taken as a base composition, and zironia was added in this composition to broaden the firing range, increase the mechanical strength, and control the thermal expansion. The thermal and mechanical properties were investigated. The results are as follows; 1. Zirconia phase was formed in LAS matrix and apparent porosity was decreased from 0.9% to 0.5%, and the mechanical strength was kincreased from 112 MPa to 190 MPa, by the densification of body. 2. The composition Li2O.Al2O3.8SiO2 has a negative thermal expansion, but the thermal expansion was changed from negative to positive with the densification and the increase of amount of synthesized zircon phase which had positive thermal expansion. The coefficient of thermal expansion, with the increase of the amount of additives, was low as -0.74~9.06$\times$10-7/$^{\circ}C$ in 20~$600^{\circ}C$, and 7.95~20.13$\times$10-7/$^{\circ}C$ in 20~80$0^{\circ}C$. 3. The mechanical strength of LZ15 (added with ZrO2.SiO2 15 wt%) composition thermal-shocked was stable in the temperature range of 0~$600^{\circ}C$, but rapidly decreased due to the increase of thermal expansion above $600^{\circ}C$.

  • PDF