• Title/Summary/Keyword: Sink Node

Search Result 325, Processing Time 0.02 seconds

Energy-Efficient Data Aggregation and Dissemination based on Events in Wireless Sensor Networks (무선 센서 네트워크에서 이벤트 기반의 에너지 효율적 데이터 취합 및 전송)

  • Nam, Choon-Sung;Jang, Kyung-Soo;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • In this paper, we compare and analyze data aggregation methods based on event area in wireless sensor networks. Data aggregation methods consist of two methods: the direct transmission method and the aggregation node method. The direct aggregation method has some problems that are data redundancy and increasing network traffic as all nodes transmit own data to neighbor nodes regardless of same data. On the other hand the aggregation node method which aggregate neighbor's data can prevent the data redundancy and reduce the data. This method is based on location of nodes. This means that the aggregation node can be selected the nearest node from a sink or the centered node of event area. So, we describe the benefits of data aggregation methods that make up for the weak points of direct data dissemination of sensor nodes. We measure energy consumption of the existing ways on data aggregation selection by increasing event area. To achieve this, we calculated the distance between an event node and the aggregation node and the distance between the aggregation node and a sink node. And we defined the equations for distance. Using these equations with energy model for sensor networks, we could find the energy consumption of each method.

Network analysis by signal-flow graph (Signal-flow graph에 의한 회로분석)

  • Hyung Kap Kim
    • 전기의세계
    • /
    • v.17 no.2
    • /
    • pp.11-15
    • /
    • 1968
  • One of the most important methods used in the modern analysis of linear networks and systems is the signal flow graph technique, first introduced by S.J. Mason in 1953. In essence, the signal-flow graph technique is a graphical method of solving a set of simultaneous. It can, therefore, be regarded as an alternative to the substitution method or the conventional matrix method. Since a flow-graph is the pictorial representation of a set of equations, it has an obvious advantage, i.e., it describes the flow of signals from one point of a system to another. Thus it provides cause-and-effect relationship between signals. And it often significantly reduces the work involved, and also yields an easy, systematic manipulation of variables of interest. Mason's formula is very powerful, but it is applicable only when the desired quantity is the transmission gain between the source node and sink node. In this paper, author summarizes the signal-flow graph technique, and stipulates three rules for conversion of an arbitrary nonsource node into a source node. Then heuses the conversion rules to obtain various quantities, i.e., networks gains, functions and parameters, through simple graphical manipulations.

  • PDF

Mobile Sensor Node Using Optimal Routing In Wireless Sensor Network (무선 센서 네트워크에서 이동 센서 노드 이용으로 최적 라우팅 방법)

  • Han, Sung-Hoon;Han, Ki-Jun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.431-434
    • /
    • 2006
  • 센서 네트워크(Sensor Network)는 항공기(Aircraft)로 살포되는 센서 노드(Sensor Node)들로 구성된다. 자연적인 장애물 즉, 바람, 나무 등이나 빌딩과 같은 조형물로 인해 적절한 위치에 센서 노드들이 배치되지 못하여 불필요한 에너지 소비와 전송 지연 등이 발생하게 된다. 본 논문에서는 기존 논문에서 사용하던 고정 노드(Static Node) 뿐만 아니라 이동 노드(Mobile Node)를 센서 필드(Sensor Field)에 배치 할 것이다. 각 센서 노드의 정보를 싱크(Sink)노드가 수집 분석 후 본 논문에서 제시한 제안에 따라 이동 노드 위치 변경하여 센서 네트워크 라우팅(Routing)의 성능을 향상시키는 방법을 제안한다.

  • PDF

Performance Evaluation of Tree Routing in Large-Scale Wireless Sensor Networks (대규모 센서네트워크에서의 트리라우팅 성능평가)

  • Beom-Kyu Suh;Ki-Il Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • Tree routing is one of appropriate routing schemes in wireless sensor network because the complexity of this approach is relatively low. But, congestion at a specific node may happen because a parent node toward a sink node is usually selected in one hop way, specially where large number of node are deployed. As feasible solution for this problem, multiple paths and sinks schemes can be applied. However, the performance of these schemes are not proved and analyzed yet. In this paper, we conduct diverse simulaton scenarios performance evaluation for these cases to identify the improvement and analyze the impact of schemes. The performance is measured in the aspects of packet transmission rate, throughput, and end-to-end delay as a function of amount of network traffic.

A Rendezvous Node Selection Scheme Considering a Drone's Trajectory for Reliable Data Collection (안정적인 데이터 수집을 위해 드론의 비행경로를 고려한 랑데부 노드 선정 기법)

  • Min, Hong;Jung, Jinman;Kim, Bongjae;Heo, Junyoung
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.77-81
    • /
    • 2018
  • Many studies that improve the efficiency of data collection and a network's lifetime by using a mobile sink have been conducted using wireless sensor networks. If a drone is used as a mobile sink, the drone can collect data more efficiently than can existing mobile sinks operating on the ground because the drone can minimize the effects of obstacles and the terrain. In this paper, we propose a rendezvous node selection scheme which considers estimated drone's trajectory and data collection latency of sensor networks for reliable data collection, when a drone whose trajectory is not predetermined works with terrestrial wireless sensor networks. A selected rendezvous node on the ground collects data from the entire network and it sends then collected data to the drone via direct communication. We also verify that the proposed scheme is more reliable than previous schemes without considering the drone's trajectory and data collection latency.

A Geographical Routing Protocol Based on Agent for Wireless Sensor Networks (무선센서네트워크에서 에이전트 기반의 지리정보 라우팅 프로토콜)

  • Dong, Lihua;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2143-2149
    • /
    • 2010
  • An agent based geographic routing protocol is proposed to improve the well-known geographic routing protocol-GPSR routing protocol. In the proposed scheme, the agent is selected by sink node which concern about the source node's position as well as agent candidate's state. So packets will first be forwarded to agent and next step is to be forwarded to their final goal- sink node from agent. During the next hop selection process, nodes select their neighbors by considering not only position but also their average available buffer size. This results in efficient selection of next hop node in congestion area, and then increases the successful packet delivery ratio. The simulation is conducted for two scenarios: general number of connections and large number of connections in our map. Results show that new method with agent achieves improved performance in successful packet delivery ratio when compares to GPSR without our scheme.

An Energy Efficient Hybrid Routing Protocol Based on LEACH and PEGASIS (LEACH와 PEGASIS 기법에 기반한 에너지 효율적 하이브리드 라우팅 규약)

  • Lee, Young-Han;Lee, Hyun-Jun;Lee, Kyung-Oh
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.629-636
    • /
    • 2009
  • Since all sensor nodes in wireless sensor networks work by their own embedded batteries, if a node runs out of its battery, the sensor network can not operate normally. In this situation we should employ the routing protocols which can consume the energy of nodes efficiently. Many protocols for energy efficient routing in sensor networks have been suggested but LEACH and PEGASIS are most well known protocols. However LEACH consumes energy heavily in the head nodes and the head nodes tend to die early and PEGASIS - which is known as a better energy efficient protocol - has a long transfer time from a source node to sink node and the nodes close to the sink node expend energy sharply since it makes a long hop of data forwarding. We proposed a new hybrid protocol of LEACH and PEGASIS, which uses the clustering mechanism of LEACH and the chaining mechanism of PEGASIS and it makes the life time of sensor networks longer than other protocols and we improved the performance 33% and 18% higher than LEACH-C and PEGASIS respectively.

QoS-guaranteed Routing for Wireless Sensor Networks (무선 센서 네트워크를 위한 QoS 보장 라우팅)

  • Heo, Jun-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.23-29
    • /
    • 2011
  • In some applications of wireless sensor networks, requirements such as energy efficiency, real-time, and reliable delivery need to be considered. In this paper, we propose a novel routing algorithm for wireless sensor networks. It provides real-time, reliable delivery of a packet, while considering energy awareness. In the proposed algorithm, a node estimates the energy cost, delay and reliability of a path to the sink node, based only on information from neighboring nodes. Then, it calculates the probability of selecting a path, using the estimates. When packet forwarding is required, it randomly selects the next node. A path with lower energy cost is likely to be selected, because the probability is inversely proportional to the energy cost to the sink node. To achieve real-time delivery, only paths that may deliver a packet in time are selected. To achieve reliability, it may send a redundant packet via an alternate path, but only if it is a source of a packet. Experimental results show that the proposed algorithm is suitable for providing energy efficient, real-time, reliable communications.

An Event Data Delivery Scheme in GTS-based Wireless Sensor Network (GTS 기반 무선 센서 네트워크에서 이벤트 데이터 전달 방안)

  • Lee, Kil-hung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.125-132
    • /
    • 2015
  • This paper presents an event data delivery scheme for wireless sensor networks that use a GTS-based channel allocation scheme. Many sensor nodes can share a GTS channel for sending their normal data to the sink node. When there is an event at a node, the node makes a temporal route to the sink node and the nodes of the route can use the GTS channel in a privileged access. This scheme controls the backoff number effectively so the data delivery priority is given to the nodes of that route. Simulation results show that the event data delivery of the proposed scheme outperforms at the end-to-end transfer delay and jitter characteristics. The proposed scheme can effectively gather the event data using the guaranteed GTS channel of the route in proposed scheme.

Implementation of RFID System using Wireless Sensor Networks (무선 센서 네트워크를 이용한 RFID 시스템 구현)

  • Jung, Kyung-Kwon;Lee, Seung-Joon;Lee, Chang-Won;Nghia, Truong Van;Chung, Sung-Boo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.858-861
    • /
    • 2011
  • In this paper, we present a RFID system by using a wireless sensor network. The proposed system is installed in glove for activity monitoring. The RFID reader, to send data by using sensor network platform and RFID tag are small size, the shape of quadrangle, and operate in the frequency of 13.56 MHz. The sensor node can read RFID tags on the various objects used in daily living such as furniture, medicines, and kitchenwares. The sensor node reads the data of RFID tags, it transmits wireless packets to the sink node. The sink node sends the received packet immediately to a server system. The data from each RFID system is collected into a database, and then the data are processed to visualize the measurement of daily living activities of users. We provide a web-based monitoring system, and can see the number of RFID tag readings per day as bar charts. The result of experiments demonstrates that the way we propose can help to check the situation of life for people who live alone.

  • PDF