• Title/Summary/Keyword: Singularity Distribution

Search Result 59, Processing Time 0.022 seconds

An Experimental Study for the Wave Exciting Force of a Truss Spar (Truss Spar의 파강제력에 대한 실험적 연구)

  • Jo, Hyo-Jae;Goo, Ja-Sam;Oh, Tae-Won;Kim, Byung-Won;Ha, Mun-Keun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.261-266
    • /
    • 2002
  • This study presents the wave forces for spar platforms. The advantage of spar platform is that it is easy to manufacture and excellency to motion characteristics. It is important to estimate exactly wave force acting spar platforms for basic design of them. We measured the wave exciting force for classic spar and truss spar model, and accomplished the numerical calculation using diffraction theory. The results show that experimental values are good agreement with theoretical values. But it is difficult to estimate accurate value considering the heave plate of truss spar due to the viscosity.

  • PDF

Electric Discharge Analysis Using Nonlinarly-Coupled Equation of Electromagnetic Field and Charge Transport (방전현상 해석을 위한 전자장 및 전하이동 방정식의 비선형 결합 알고리즘)

  • Lee, Se-Yeon;Park, Il-Han;Lee, Se-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1494-1495
    • /
    • 2006
  • A complete finite element analysis method for discharge onset process, which is governed and coupled by charge transport equation and electric field equation, was presented. The charge transport equation of first order was transformed into a second-order one by utilizing the artificial diffusion scheme. The two second-order equations were analyzed by the finite element formulation which is well-developed for second-order ones. The Fowler-Nordheim injection boundary condition was adopted for charge transport equation. After verifying the numerical results by comparing to the analytic solutions using parallel plane electrodes with one carrier system, we extended the result to blade-plane electrodes in 2D xy geometry with three carriers system. Radius of the sharp tip was taken to be 50 ${\mu}m$. When this sharp geometry was solved by utilizing the space discretizing methods, the very sharp tip was found to cause a singularity in electric field and space charge distribution around the tip. To avoid these numerical difficulties in the FEM, finer meshes, a higher order shape function, and artificial diffusion scheme were employed.

  • PDF

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.63-69
    • /
    • 2002
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The "stiff" fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of "stiff" fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept. apply this concept.

Nonlinear Flow Characteristics of Two-Dimensional Hydrofoils moving below the Free surface (자유수면하에서 이동하는 2차원 수중익 주위의 비선형 유동특성)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.8-19
    • /
    • 1998
  • Nonlinear flow characteristics of a hydrofoil running under the free surface are investigated based on potential flow theory using singularity distribution techniques. Following Hess & Smith's method[12], sources and vortices are distributed on the surface of the foil and Rankine sources are distributed at a distance above the undisturbed free surface to solve the nonlinear free surface waves(so called Raised Panel Method). Using the linearized Neumann-Kelvin solution, the conversed solutions which rigidly satisfy the nonlinear free surface condition is obtained through an iterative technique. It is validated that the nonlinear solutions are compared with Duncan's experimental results(NACA 0012, $\alpha=5^{\circ}$), showing good correlations with each other. At a very shallow submergence and a very high speed the converged solutions are obtained. As the speed increases higher, it is shown that the difference between the nonlinear and linear solutions are trivial. Finally, the effects of the camber and thickness on the nonlinear flow characteristics of the foil are investigated.

  • PDF

An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems (2차원 자유표면파 문제에서의 국소 유한요소법의 응용)

  • Hyun-Kwon,Kil;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.3
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

A Study on the Control of Short-period Waves by Resonator (공진장치에 의한 단주기파랑의 제어에 관한 연구)

  • Lee, Kwang-Ho;Beom, Seong-Sim;Kim, Do-Sam;Park, Jong-Bae;An, Seong-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.36-47
    • /
    • 2012
  • In this study, the control performance of resonator was reviewed through numerical analysis and 3-dimensional hydraulic model experiments by attaching the resonator suggested in the existing studies to the openings of rectangular harbor and breakwater placed in a straight line to reduce short-period waves. In the numerical analysis, linear analysis method of singularity distribution method based on vertical-line Green function and full non-linear analysis method by 3D-NIT model were applied, and the validity of the numerical analysis methods was verified through comparative analysis between results of hydraulic experiments and numerical analysis results. In addition, effectiveness of the resonator was confirmed by reviewing its control performance on the short-period waves through review on the comparison with the case in which the resonator is not attached.

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method (효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.

The Change and Characteristic of Spacial Structure from Rural Space to Urban Space : The Case of Hwamyeong-Dong of Buk-gu in Busan (농촌에서 도시로의 공간구조 변화와 특성 - 부산 북구 화명동을 중심으로 -)

  • Kong, Yoon Kyung
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.1
    • /
    • pp.97-110
    • /
    • 2013
  • The purpose of this study is to investigate the change of spacial structure from rural space to urban space and to examine the characteristic of spacial restructure, focusing on the Hwamyeong-Dong of Buk-gu in Busan. Hwamyeong-Dong has changed from rural area to urban area because of spacial expansion owing to industrialization and urbanization. The unique natural environment, rural village, etc. were disappeared and instead the apartment complex, commercial building, and so on were built. For this reason, historic and concrete place were vanished and so the spacial homogenization and uniformization were formed centering around apartment complex. But the singularity of Hwamyeong-Dong exposes in the way that unique history, custom and memory, trace of Hwamyeong-Dong preserved through the support and effort of the residents and that the Daechen stream changed to ecological stream. In addition, Hwamyeong-Dong altered heterogeneous, multi-layered urban space from homogeneous rural space in terms of the apartment supply sectors and scale, the distribution and kind of commercial facility, residents's composition. This has brought about the subdivision, hierarchization of the space as well as the residence, education, culture. Especially, Hwamyeong3-Dong that built to large scale apartment complex are significantly different from Hwamyeong2-Dong. Hwamyeong2-Dong is marginalizing step by step. However, It is found that the residents in Hwamyeong2-Dong are making an effort for liveable place with ecological residential community and educational cultural community as the center.

  • PDF

A Study on the Neumann-Kelvin Problem of the Wave Resistance (조파저항에서의 Neumann-Kelvin 문제에 대한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 1985
  • The calculation of the resulting fluid motion is an important problem of ship hydrodynamics. For a partially immersed body the condition of constant pressure at the free surface can be linearized. The resulting linear boundary-value problem for the velocity potential is the Neumann-Kelvin problem. The two-dimensional Neumann-Kelvin problem is studied for the half-immersed circular cylinder by Ursell. Maruo introduced a slender body approach to simplify the Neumann-Kelvin problem in such a way that the integral equation which determines the singularity distribution over the hull surface can be solved by a marching procedure of step by step integration starting at bow. In the present pater for the two-dimensional Neumann-Kelvin problem, it has been suggested that any solution of the problem must have singularities in the corners between the body surface and free surface. There can be infinitely many solutions depending on the singularities in the coroners.

  • PDF