• Title/Summary/Keyword: Singlet oxygen

Search Result 132, Processing Time 0.029 seconds

Excited State Proton Transfers and Subsequent Electron Rearrangement of Aqueous 6-Hydroxyquinoline

  • 유현웅;권혁진;장두전
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.156-161
    • /
    • 1997
  • Aqueous 6-hydroxyquinoline in the first excited singlet state undergoes protonation to the imine group first in 15 ps, then in the time scale of 40 ps deprotonation from the enol group and finally, however, quickly as in 11 ps electron rearrangement to change into a resonance hybrid structure of quinoid-prevailing forms. Despite the fact that the decay time constant is smaller than the formation time constant, fluorescence from excited protropic zwitterion is observed to assign its maximum at 510 nm. The electron rearrangement is basically an intramolecular charge transfer from the deprotonated oxygen atom to the positively charged iminium ring without any notable change in nuclear geometry, producing a zwitterionic quinoid structure with much a smaller electric dipole moment than the zwitterionic protropic species. This photoproduct formed by consecutive excited state proton and electron transfers shows a smaller dipole moment in S1 than in S0 and a hypsochromic shift although its S1 state has (π, π*) character.

Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage (그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘)

  • Park, So Hyun;Shin, Hyuk Soo;Lee, Nan Hee;Hong, In Kee;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • In this study, we investigated the cellular protective effects and mechanisms of nicotiflorin and its aglycone kaempferol isolated from Annona muricata. The protective effect of these components against $^1O_2$-induced cell damage was also studied by using L-ascorbic acid and (+)-${\alpha}$-tocopherol as controls. Kaempferol exhibited the most potent protective effect, followed by (+)-${\alpha}$-tocopherol and nicotiflorin. L-Ascorbic acid did not exhibit any cellular protective effects. To elucidate the mechanism underlying protective effects, the quenching rate constant of the singlet oxygen, free radical-scavenging activity, ROS-scavenging activity, and uptake ratio of the erythrocyte membrane were measured. The results showed that the cell membrane penetration is a key factor determining the cellular protective effect of kaempferol and its glycoside nicotiflorin. The result from L-ascorbic acid demonstrated that the cellular protective effect of a compound depends on its ability to penetrate the cell membrane and is independent of its antioxidant capacity. In addition, it is suggested that cellular protective effects of kaempferol and (+)-${\alpha}$-tocopherol depend not only on the cell permeability, but also on free radical- and ROS-scavenging activities. These results indicate that the cell permeability and free radical- and ROS- scavenging activities of antioxidants are major factors affecting the protection of cell membranes against the oxidative damage induced by photosensitization reaction.

The Role of Active Oxygen on DNA Damage by Linoleic Acid Peroxidation Products (Linoleic acid 산화생성물(酸化生成物)의 DNA손상작용에 있어서의 활성산소종(活性酸素種)의 역할)

  • Kim, Seon-Bong;Kang, Jin-Hoon;Lee, Yong-Woo;Kim, In-Soo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 1987
  • The present paper was carried out to investigate the effects of active oxygen radicals on the DNA damage by linoleic acid peroxidation by using active oxygen scavengers in a linoleic acid-DNA system. DNA was greatly damaged by linoleic acid peroxidation, and the DNA damage was inhibited by the addition of active oxygen scavengers. Among active oxygen scavengers tested, ${\alpha}-tocopherol$ and superoxide dismutase greatly inhibited the DNA damage, but catalase and tris (hydroxymethyl) aminomethane didn't show such effects. Accordingly, singlet oxygen and superoxide anion greatly affected to the DNA damage occurring during linoleic acid peroxidation, and hydrogen peroxide was shown to participate in DNA damage in the early stage of peroxidation. And, the DNA damage by active oxygen radicals was mainly induced in the early stage of linoleic acid peroxidation.

  • PDF

Expression of Cu/Zn SOD according to H2O2 in Hepatoma cell line (Hepatoma 세포주에서 H2O2 처리에 의한 Cu/Zn SOD의 발현)

  • Kim, Young-Min;Seo, Won-Sook
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.230-234
    • /
    • 2007
  • Oxygen is required for many important aerobic cellular reactions, it may undergo electrontransfer reactions, which generate highly reactive membrane-toxic intermediates (reactive oxygen species, ROS), such as hydrogen peroxide, singlet oxygen, superoxide radical, hydroxyl radical, hydroperoxyl radical, hydroxy ion. Various mechanisms are available to protect cells against damage caused by oxidative free radicals, including scavenging enzyme systems such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This antioxidant defense system is a very complex and finely tuned system consisting of enzymes capable of detoxifying oxygen radicals as well as low molecular weight antioxidants. In addition, repair and turnover processes help to minimize subcellular damage resulting from free radical attack. $H_2O_2$,one of the major ROS, is produced at a high rate as a product of normal aerobic metabolism. The primary cellular enzymatic defense systems against $H_2O_2$ are the glutathione redox cycle and catalase. From Northern blot analysis of total RNAs from cultured cell with $H_2O_2$ treatment, various results were obtained. Expression of Cu/Zn SOD decreased when cell passage increased, but the level of the Cu/Zn SOD was scarcely expressed in 35 passage.

Photocyclization Reactions of ($\omega$-Phthalimidoalkoxy)acetic Acids via Sequential Single Electron Transfer-Decarboxylation Pathways

  • Yoon, Ung-Chan;Lee, Chan-Woo;Oh, Sun-Wha;Oh, Sun-Wha;Hyun Jin kim;Lee, Sang-Jin
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.143-148
    • /
    • 2000
  • Studies have been conducted to explore single electron transfer(SET) promoted photocyclization of ($\omega$-phthalimidoalkoxy)acetic acids(alkoxy=ethoxy, n-propoxy and n-butyloxy). Photocyclizations occur in methanol or acetone in high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the carboxylic group. These photocyclizations are thought to proceed through pathways involving intramolecular SET from oxygen in the $\alpha$-carboxymethoxy groups to the singlet excited state phthalimide moieties followed by decarboxylation of the intermediate $\alpha$-carboxymethoxy cation fadicals and cyclizations by radical coupling. The photocyclizations occur ca. three times faster in both methanol or acetone with one equivalent of sodium hydroxide added to the reactions and occur slower in acetone than in methanol. The efficient and regiselective cyclization reactions observed for photolyses in methanol represent synthetically useful processes for construction of heterocyclic compounds.

  • PDF

Development of Vaccinium uliginosum L. extracts for whitening & anti-wrinkle functional food

  • Choung Se-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2005.04a
    • /
    • pp.131-148
    • /
    • 2005
  • This study is peformed to investigate the effect of water extract from Vaccinium uliginosum L., on melanin production in B 16 melanoma cells, procollagen production and matrix metalloproteinase-1(MMP-1) inhibition in human fibroblast cells. One hundred grams of the Vaccinium uliginosum L. was extracted with 2000 mL of water($90^{\circ}C$, 16h, 2times). The water extracts were lyophilized and stored at $4^{\circ}C$ until used. Dry weight yields of extracts of Vaccinium uliginosum L. were $3\%$(w/w). Extracts from Vaccinium uliginosum L. showed scavenger activities on DPPH radical, superoxide anion radical, hydroxyl radical, hydrogen peroxide and singlet oxygen radical. And these substances inhibited release of cyiokines from human keratinocyte after UV B exposure. Therefore we confirmed that extracts from Vaccinium uliginosum L. had antioxidative effect. These substances inhibited purified tyrosinase activity and melanogenesis in B 16 melanoma cells treated/untreated IL-$1{\alpha}$. Moreover this extract stimulated procollagen production and inhibited MMP-1 production in human fibroblast cells treated/untreated IL-$1{\beta}$. Therefore we confirmed that extracts from Vaccinium uliginosum L. had whitening effect. And these substances decreased degree of wrinkle in hairless mouse skin that induced by UV B irradiation. Therefore we confirmed that extracts from Vaccinium uliginosum L. had anti-wrinkle effect. From the above results, it is possible that Vaccinium uliginosum L. may be developed to be an anti-melanogenesis agent and anti-wrinkle agent.

  • PDF

POSSIBLE INVOLVEMENT OF Fe-S CENTERS AS MAJOR ENDOGENOUS PHOTOSENSITIZERS IN HIGH LIGHT-CAUSED LOSS OF MEMBRANE STRUCTURE AND FUNCTION OF MITOCHONDRIA

  • Kim, Chang-Sook;Jung, Jin
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.9-14
    • /
    • 1994
  • Exposure of isolated intact mitochondria to near UV to visible light resulted in not only loss of respiration, the most well-documented phenomenon regarding phototoxic effects in the respiring organelles, but also lipid peroxidation of membranes and mitochondrial swelling; these turned out to be O$_2$-dependent and thus prevented by anaerobiosis, enhanced by a partial deuteration of the suspension medium, and suppressed by the presence of a singlet oxygen ($^1O_2$) scavenger. Measurements of the spectral dependence of such detrimental effects of light on mitochondrial structure and function revealed that all the resulting spectra bear a significant resemblance to the action spectrum for photogeneration of $^1O_2$ from mitochondrial membranes, which in turn carries the spectral characteristics of light absorption by mitochondrial Fe-S centers. Futhermore, destructing the Fe-S centers by a mercurial treatment of mitochondria brought about a striking reduction of the light-induced membrane peroxidation and swelling of mitochondria. These results are consistent with the suggestion that the impairment of functional, structural integrity of mitochondria caused by strong irradiation is directly related to the production of $^1O_2$ in mitochondria, photosensitized by the Fe-S centers. This paper also presents kinetic data which indicate that, among various membrane-bound protein systems associated with mitochondrial energy metabolism, the respiratory chain is the primary target for photodamage.

  • PDF

Electrical and Chemical Properties of Mica/Epoxy Composite Materials as Affected by Short-Time Aging

  • Kim, Hee-Dong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.59-65
    • /
    • 2003
  • Electrical properties such as permittivity and tan$\delta$ of unaged (control) and aged (72 h at 18$0^{\circ}C$) mica/epoxy composites of 130 ${\mu}{\textrm}{m}$ thickness were measured and their surface conditions were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), electron spectroscopy for chemical analysis (ESCA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both permittivity and tan6 of control specimens were higher than those of short-time aged specimens. FTIR results show a new peak at 1710 $cm^{-1}$ / for short-time aged specimens, originating from carbonyl group formed by the oxidation reaction during the aging process. ESCA results show that the binding energy at 532.9 eV representing the singlet state of oxygen ( $O_{1s}$) decreases by 13.7%, whereas that at 534.6 eV increases by 13.7%. Glass transition temperatures of control and short-time aged specimens are observed to be 95.4$^{\circ}C$ and 113.4$^{\circ}C$, which increase with the increase of aging time. TGA results indicate that the control specimens contain a smaller amount of volatile components than the short-time aged specimens.s.

Differential Antioxidant Effects of Ambroxol, Rutin, Glutathione and Harmaline

  • Kim, Hyun-Ho;Jang, Yoon-Young;Han, Eun-Sook;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.7 no.2
    • /
    • pp.112-120
    • /
    • 1999
  • The protective actions of ambroxol, rutin, glutathione and harmaline on oxidative damages of various tissue components were compared. The mechanisms by which they prevent oxidative tissue damages were explored. Lipid peroxidation of liver microsomes induced by combinations of $Fe^{2+}$ and ascorbate or $Fe^{+3}$, ADP and NADPH was inhibited by $50\; \muM$ of rutin, ambroxol, harmaline and glutathione. Ambroxol ($100\; \muM$) inhibited the degradation of hyaluronic acid by $Fe^{2+}$, $H_2O$_2$ and ascorbate, and it was greater than that of harmaline, whereas hyaluronic acid degradation was not prevented by rutin and glutathione. The compounds used ($100\; \muM$) did not protect the degradation of cartilage collagen by xanthine and xanthine oxidase. Rutin, glutathione and harmaline decreased the degradation of IgG by xanthine and xanthine oxidate, while ambroxol did not attenuate degradation of IgG. Glutathione showed a scavenging action on $H_2O_2$. The compounds all showed scavenging actions on hydroxyl radical. Ambroxol and harmaline exhibited quenching effects en singlet oxygen. In conclusion, ambroxol, rutin, glutathione and harmaline may exert protective effects differently on tissue components against oxidative attack depend on kind of tissue component and free radical.

  • PDF

Differential Effects of herbicidal Compounds on Cytoplasmic Leakages of Green- and White-Maize Leaf Segments

  • Kim, Jin-Seog;Park, Jung-Sup;Kim, Tae-Joon;Yoonkang Hur;Cho, Kwang-Yun
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.61-66
    • /
    • 2001
  • Using maize green- and white-leaf tissue, we have examined the effect of various chemicals on cytoplasmic leakage with respect to the light requirement or chloroplast targeting for their activities. Oxyfluorfen, oxadiazon, diuron, and paraquat, which are known as representative herbicides acting on plant chloroplasts, caused the electrolyte leakage only in the green tissues, whereas 2, 4-dinitrophenol, rose bengal (singlet oxygen producing chemical) and methyl-jasmoante (senscence-stimulating chemical) play a role both in green- and white-tissue. Benzoyl(a) pyrene, generating superoxide radical upon light illumination, functions only in white tissues. Tralkoxydim, metsulfuron-methyl and norflurazon showed no effect in two tested plant samples. In terms of light requirement in electrolyte leakage activity, diuron, oxyfluorfen, oxadiazon, rose bengal, and benzoyl(a) pyrene absolutely require the light for their functions, but other chemicals did not. based on these results, we could classify into four different response types according to whether chemicals require light or chlroplasts for their action. This classification is likely to be applied to simply and rapidly identify the requirement of light and chlroplasts for the actions of chemicals, thereby it makes easy to characterize many new herbicides that their action mechanisms are unclear, and to elucidate the mode of action of them.

  • PDF