• 제목/요약/키워드: Single-well carbon nanotubes (SWCNT)

검색결과 12건 처리시간 0.024초

Quantitative Evaluation of Non-Carbon Content in the Single Wall Carbon Nanotube Soot using Thermogravimetric Analysis

  • Han, J.H.;An, K.H.;Lee, N.S.;Goak, J.C.;Jeong, M.S.;Choi, Y.C.;Oh, K.H.;Kim, K.K.;Lee, Y.H.
    • Carbon letters
    • /
    • 제10권1호
    • /
    • pp.5-8
    • /
    • 2009
  • We measured the non-carbon content of single-walled carbon nanotubes (SWCNTs) in SWCNT soot using thermogravimetric analysis. The weight increased percentage by the oxidation of metal in the raw soot is well obtained by TGA graph which was confirmed with ICP-AES, XRD, and XPS. This work will be very useful for the purity precise evaluation of SWCNT with UN-vis-NIR spectroscopy.

Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms

  • Mananghaya, Michael R.
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.34-46
    • /
    • 2012
  • Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen ($CN_xNT$), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-$CN_xNT$), and (iii) chemical functionalization of (10,0) and (5,5) 3NV-$CN_xNT$ with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV-$CN_xNT$ are significantly enhanced when compared to the pure SWCNTs.

방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료 (Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering)

  • 권한상
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • 민형섭;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

투명전도막을 위한 용해 처리된 단일막 탄소나노튜브 (Solution Processed Single Walled Carbon Nanotubes Transparent Conducting Films)

  • S. 마니바난;정일옥;유제황;장진;박규창
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.45-45
    • /
    • 2008
  • In recent years, new materials and technology has been developed using single-walled carbon nanotubes (SWCNTs) as an alternative to indium tin oxide (ITO) to fulfil the requirements towards novel technological drive. These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. In addition, SWCNTs can be solution processed to replace the sophisticated vacuum techniques at high temperatures. In the present work, transparent conducting films were fabricated from the purified SWCNTs. Dispersion of purified SWCNTs was accomplished in 1,2-dichlorobenzene without using surfactants or polymers following ultrasonic process. We achieved coating of nanotubes film on poly ether suiphone (PES) for an average sheet resistance ~110 ${\Omega}/{\Box}$ of optical transmittance 80% at 550 nm. Conventional spin coating method was followed to fabricate films from the purified and dispersed nanotubes solution. The results will be presented.

  • PDF

갈륨비소-탄소나노튜브 복합체 제작과 전계방출특성 (GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property)

  • 임현철;찬드라세카;장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.199-203
    • /
    • 2010
  • Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at $400^{\circ}C$ under an $N_2/O_2$ atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from $400^{\circ}C$ to $600^{\circ}C$. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under $500^{\circ}C$, while nanowire structures begin to form on the beads above $600^{\circ}C$. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of $2.0\;V/{\mu}m$ was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.

Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix

  • Besseghier, Abderrahmane;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Benzair, Abdelnour
    • Advances in nano research
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2015
  • In the current study, the nonlinear vibration properties of an embedded zigzag single-walled carbon nanotube (SWCNT) are investigated. Winkler-type model is used to simulate the interaction of the zigzag SWCNTs with a surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNT is derived through harmonic balance method. The equivalent Young's modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. The amplitude - frequency curves for large-amplitude vibrations are graphically illustrated. The simulation results show that the chirality of zigzag carbon nanolube as well as surrounding elastic medium play more important roles in the nonlinear vibration of the single-walled carbon nanotubes.

Passively Q-switched Erbium Doped All-fiber Laser with High Pulse Energy Based on Evanescent Field Interaction with Single-walled Carbon Nanotube Saturable Absorber

  • Jeong, Hwanseong;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.203-206
    • /
    • 2017
  • We report a passive Q-switching of an all-fiber erbium-doped fiber laser delivering high pulse energy by using a high quality single-walled carbon nanotube saturable absorber (SWCNT-SA). A side-polished fiber coated with the SWCNT is employed as an in-line SA for evanescent wave interaction between the incident light and the SWCNT. This lateral interaction scheme enables a stable Q-switched fiber laser that generates high pulse energy. The central wavelength of the Q-switched pulse laser was measured as 1560 nm. A repetition rate frequency of the Q-switched laser is controlled from 78 kHz to 190 kHz by adjusting the applied pump power from 124 mW to 790 mW. The variation of pulse energy from 51 nJ to 270 nJ is also observed as increasing the pump power. The pulse energy of 270 nJ achieved at maximum pump power is 3 times larger than those reported in Q-switched all-fiber lasers using a SWCNT-SA. The tunable behaviors in pulse duration, pulse repetition rate, and pulse energy as a function of pump power are reported, and are well matched with theoretical expectation.

Critical buckling loads of carbon nanotube embedded in Kerr's medium

  • Bensattalah, Tayeb;Bouakkaz, Khaled;Zidour, Mohamed;Daouadji, Tahar Hassaine
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.339-356
    • /
    • 2018
  • In this article, the critical buckling of a single-walled carbon nanotube (SWCNT) embedded in Kerr's medium is studied. Based on the nonlocal continuum theory and the Euler-Bernoulli beam model. The governing equilibrium equations are acquired and solved for CNTs subjected to mechanical loads and embedded in Kerr's medium. Kerr-type model is employed to simulate the interaction of the (SWNT) with a surrounding elastic medium. A first time, a comparison with the available results is made, and another comparison between various models Winkler-type, Pasternak-type and Kerr-type is studied. Effects of nonlocal parameter and aspect ratio of length to diameter of nanobeam, as well as the foundation parameters on buckling of CNT are investigated. These results are important in the mechanical design considerations of nanocomposites based on carbon nanotubes.

Characterization of Single-walled Carbon Nanotubes Synthesized by Water-assisted Catalytic Chemical Vapor Deposition

  • Lee, Yeon-Ja;Kim, Bawl;Yu, Zhao;Lee, Cheol-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.381-381
    • /
    • 2011
  • The influence of the water vapor on the growth of single-walled carbon nanotubes (SWCNTs) was investigated. SWCNTs were synthesized by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst with injection of water vapor. The morphologies and structures of the water-assisted SWCNTs were investigated according to the growth conditions such as water vapor concentrations, flow rate of the gas, furnace temperature, and growth time. Water-assisted SWCNTs exhibited large bundle morphological features with well-alignment of each CNT, while SWCNTs synthesized in the absence of water vapor showed entangled CNT with the random orientation. We also found that the diameter of the SWCNT bundle could be controlled by the growth condition. In our optimal growth condition, the product yield and the purity were 300 wt. % and 75%, which were 7.5 and 2.5 times higher than those of SWCNTs synthesized without water vapor, respectively. More detail discussion will be offered at the poster presentation.

  • PDF