• Title/Summary/Keyword: Single-volt model

Search Result 5, Processing Time 0.021 seconds

Tensile Experiment and FE Analysis of L-type Flange Bolt Connection in Wind Turbine Support Structures (풍력터빈 지지구조물의 볼트 체결된 L형 플랜지에 대한 인장 실험 및 FE해석)

  • Dae-Jin Jung;Ik-Qhang Choi
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • In this study, a tensile test and FE analysis were conducted on a bolt-connected L-shaped flange to evaluate its behavior and load resistance. A total of five specimens were manufactured using the inner and outer distances and bolt diameters of the L-type flange as experimental variables. As a result of the tensile test of the L-shaped flange, as the internal and external length ratio (b/a) increased, the maximum load decreased and the maximum displacement increased. As the diameter (d) of the bolt increased, the maximum load and the deformation of the wall increased. The shapes of the destruction specimens showed two forms of destruction: one due to the fall of the nut and the surrender of the bolt as the thread of the bolt and nut was worn out, followed by the surrender of the wall. As a result of FE analysis, it was found that elasto-plastic model (EPM) analysis similarly tracks the behavior of the tensile test results.

Faultproof Design in Space for Monopropellant Rocket Engine Assembly (단일추진제 로켓 엔진 어셈블리를 위한 우주 공간에서의 과실 방지 설계)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1377-1384
    • /
    • 2003
  • An analysis has been performed for active thermal control of the KOMPSAT monopropellant rocket engine assembly, i.e., dual thruster module(DTM). The main efforts of this work have been directed at determining proper heater sizes for propellant valves and catalyst beds necessary to maintain their temperatures within specified temperature ranges under KOMPSAT environment and operational conditions. The TAS incorporated with TRASYS thermal radiation analyzer was used to establish a complete heat transfer model which allows to predict the DTM temperature as a function of time. The thermal analysis has been performed in transient mode to verify the appropriate power for catalyst bed heaters necessary to increase catalyst bed temperature to the required value within a specified period of time. Similar analysis has been executed to validate the heater power for the thermostatically controlled primary and redundant heater circuits used to prevent hydrazine freezing, i.e., single fault. Moreover the effect of the radiative property of thermal control coating of heat shield was examined. Thruster firing condition was also simulated for the heat soakback condition. As a consequence, all thermal analysis results for DTM satisfactorily met the thermal requirements for the KOMPSAT DTM under the worst case average voltage, i.e. 25 volt.

A compact and low-power consumable device for continuous monitoring of biosignal (소형화 및 저전력소모를 구현한 실시간 생체신호 측정기 개발)

  • Cho, Jung-Hyun;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.334-340
    • /
    • 2006
  • A compact biosignal monitoring device was developed. Electrodes for electrocardiogram (ECG) and a LED and silicon detector for photoplethysmogram (PPG) were used. A lead II type was arranged for ECG measurement and reflected light was measured at the finger tip for PPG. A single chip microprocessor (model ADuC812, Analog Device) controlled a measurement protocol and processed measured signals. PPG and ECG had a sampling rate of 300 Hz with 8-bit resolution. The maximum power consumption was 100 mW. The microprocessor computed pulse transit time (PTT) between the R-wave of ECG and the peak of PPG. To increase the resolution of PTT, analog peak detectors obtained the peaks of ECG and PPG whose interval was calculated using an internal clock cycle of 921.6 kHz. The device was designed to be operated by 3-volt battery. Biosignals can be measured for $2{\sim}3$ days continuously without the external interruptions and data is stored to an on-board memory. Our system was successfully tested with human subjects.

Two-Port Vector Network Analysis System with a Vector Signal Channel (벡터 전압 수신기를 이용한 2-포트 산란 계수 분석 시스템)

  • Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.541-548
    • /
    • 2013
  • This paper presents a vector network analysis system for 2-port scattering parameters of microwave devices using some basic microwave instruments/devices such as signal generators, vector voltmeter, directional couplers and frequency mixers. The analytical model and implementation method for scattering parameter measurements - which can replace the vector network analyzers - are presented. The performance of the implemented system is evaluated through 1- and 2-port scattering parameter measurements, respectively. The vector volt signals which determine the scattering parameters are detected in two distinct methods depending on the frequency band of interests; a direct-detection method with a single signal generator and vector voltmeter for relatively low band and a heterodyne method to frequency down-mix associated with an additional signal source as well as frequency mixers for high band are used, respectively. Using these two methods, scattering parameters of UHF and X bands are evaluated and their performances are verified through a comercial vector network analyzer.

RESEARCH ON SPACE ENVIRONMENTAL EFFECT OF ORGANIC COMPOSITE MATERIALS FOR THERMAL MANAGEMENT OF SATELLITES USING MC-50 CYCLOTRON (MC-50 싸이클로트론을 이용한 위성용 열조절 유기복합재료의 우주환경 영향 연구)

  • Kim, Dae-Weon;Kim, Dong-Iel;Huh, Yong-Hak;Yang, Tae-Keun;Lee, Ho-Young;Kim, Yong-Hyup
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2005
  • The organic material is one of the most popular material for the satellites and the spacecrafts in order to perform the thermal management, and to protect direct exposure from the space environment. The present paper observes material property changes of organic material under the space environment by using ground facilities. One of the representative organic thermal management material of satellites, 2 mil ITO(Indium Tin Oxide) coated aluminized KAPTON was selected for experiments. In order to investigate the single parametric effect of protons in space environment, MC-50 cyclotron system in KIRAMS(Korea Institute of Radiological and Medical Science) was utilized for the ion beam irradiation of protons and ion beam dose was set to the Very Large August 1972 EVENT model, the highest protons occurrence near the earth orbit in history. The energy of ion beam is fixed to 30MeV(mesa electron volt), observed average energy, and the equivalent irradiance time conditions were set to 1-year, 3-year, 5-year and 10-year exposure in space. The procedure of analyses includes the measurement of the ultimate tensile strength for the assessment of quantitative degradation in material properties, and the imaging analyses of crystalline transformation and damages on the exposed surface by FE-SEM(Field Emission Scanning Electron Spectroscopy) etc.