• 제목/요약/키워드: Single-stranded DNA

검색결과 148건 처리시간 0.024초

Compiling Multicopy Single-Stranded DNA Sequences from Bacterial Genome Sequences

  • Yoo, Wonseok;Lim, Dongbin;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제14권1호
    • /
    • pp.29-33
    • /
    • 2016
  • A retron is a bacterial retroelement that encodes an RNA gene and a reverse transcriptase (RT). The former, once transcribed, works as a template primer for reverse transcription by the latter. The resulting DNA is covalently linked to the upstream part of the RNA; this chimera is called multicopy single-stranded DNA (msDNA), which is extrachromosomal DNA found in many bacterial species. Based on the conserved features in the eight known msDNA sequences, we developed a detection method and applied it to scan National Center for Biotechnology Information (NCBI) RefSeq bacterial genome sequences. Among 16,844 bacterial sequences possessing a retron-type RT domain, we identified 48 unique types of msDNA. Currently, the biological role of msDNA is not well understood. Our work will be a useful tool in studying the distribution, evolution, and physiological role of msDNA.

Comparison of Hybridization Behavior between Double and Single Strand of Targets and the Application of Asymmetric PCR Targets in cDNA Microarray

  • Wei, Qing;Liu, Sanzhen;Huang, Jianfeng;Mao, Xueying;Chu, Xiaohui;Wang, Yu;Qiu, Minyan;Mao, Yumin;Xie, Yi;Li, Yao
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.439-444
    • /
    • 2004
  • Double stranded targets on the cDNA microarray contain representatives of both the coding and noncoding strands, which will introduce hybridization competition with probes. Here, the effect of double and single strands of targets on the signal intensity and the ratios of Cy5/Cy3 within the same slide were compared. The results show that single stranded targets can increase the hybridization efficiency without changing the Cy5/Cy3 ratio. Based on these results, a new strategy was established by generating cDNA targets with asymmetric PCR, instead of conventional PCR, to increase the sensitivity of the cDNA microarray. Furthermore, the feasibility of this approach was validated. The results indicate that the cDNA microarray system based on asymmetric PCR is more sensitive, with no decrease in the reliability and reproducibility as compared with that based on conventional symmetric PCR.

Overexpression and Purification of Reverse Transcriptase of Retron EC83 by Changing the Downstream Sequence of the Initiation Codon

  • JEONG , DAE-WON;LIM, DONG-BIN
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1280-1285
    • /
    • 2004
  • Retron is a prokaryotic genetic element, producing a short single-stranded DNA covalently linked to RNA (msDNA-RNA) by a reverse transcriptase (RT). In retron EC83, msDNA is further processed at between the 4th and the $5^{th}$ nucleotides, leaving a 79 nucleotide-long single-stranded DNA as a final product. To investigate this site-specific cleavage in msDNA synthesis, we purified the RT protein of retron EC83. Initially, RT ORF was cloned under the tac promoter, but the expression was very poor largely because of poor translation. In order to facilitate translation, the nucleotide sequence for the first nine amino acids was randomized with synonymous codons. This change of downstream sequence of translational initiation codon greatly affected the efficiency of translation. We could isolate clones which greatly increased RT production, and their sequences were compared to those of the low producers. The overproduced protein was purified and was shown to have RT activity.

Asymmetric Polymerase Chain Reaction-Single-Strand Conformation Polymorphism (Asymmetric PCR-SSCP) as a Simple Method for Allele Typing of HLA-DRB

  • Kang, Joo-Hyun;Kim, Kyeong-Hee;Maeng, Cheol-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.529-534
    • /
    • 1999
  • Asymmetric PCR and single-strand conformation polymorphism (SSCP) methods were combined to analyze human leukocyte antigen (HLA)-DRB allele polymorphism. Asymmetric PCR amplification was applied to generate single-stranded DNA (ssDNA) using the nonradioactive oligonucleotide primers desinged for the polymorphic exon 2 region. The conformational differences of ssDNAs, depending on the allele type, were analyzed by nondenaturing polyacrylamide gel electrophoresis and visualized by ethidium bromide staining. The ssDNAs were clearly separated from double-stranded DNA without interference and obviously migrated depending on their allele type. This method was applied to the genomic DNA either from homozygous or from heterozygous cell lines containing the DR4 allele as template DNA using DR4-specific primers, and satisfying results were obtained. Compared to the standard PCR-SSCP method, this asymmetric PCR-SSCP method has advantages of increased speed, reproducibility, and convenience. Along with PCR-SSP or sequence-based typing, this method will be useful in routine typing of HLA-DRB allele.

  • PDF

ATP Hydrolysis Analysis of Severe Acute Respiratory Syndrome (SARS) Coronavirus Helicase

  • Lee, Na-Ra;Lee, A-Ram;Lee, Bok-Hui;Kim, Dong-Eun;Jeong, Yong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1724-1728
    • /
    • 2009
  • Severe acute respiratory syndrome coronavirus (SARS-CoV) helicase separates the double-stranded nucleic acids using the energy from ATP hydrolysis. We have measured ATPase activity of SARS-CoV helicase in the presence of various types of nucleic acids. Steady state ATPase analysis showed that poly(U) has two-times higher turnover number than poly(C) with lower Michaelis constant. When M13 single-stranded DNA is used as substrate, the Michaelis constant was about twenty-times lower than poly(U), whereas turnover numbers were similar. However, stimulation of ATPase activity was not observed in the presence of double-stranded DNA. pH dependent profiles of ATP hydrolysis with the helicase showed that the optimal ATPase activities were in a range of pH 6.2 ~ 6.6. In addition, ATP hydrolysis activity assays performed in the presence of various divalent cations exhibited that $Mg^{2+}$ stimulated the ATPase activity with the highest rate and $Mn^{2+}$ with about 40% rate as compared to the $Mg^{2+}$.

Single Stranded Conformation Polymorphism 분석에 의한 돼지 Duroc 품종의 미토콘드리아 DNA 유전적 변이 (Genetic Variation of Mitochondrial DNA in Duroc (Sus Scrofa) Using Single Stranded Conformation Polymorphism Analysis)

  • 조인철;정용환;정진관;성필남;김병우;이정규;전진태
    • Journal of Animal Science and Technology
    • /
    • 제45권6호
    • /
    • pp.911-916
    • /
    • 2003
  • 돼지 Duroc 품종의 mitochondria DNA D-loop전체 유전자를 증폭하기 위하여 많은 동물에서 고도로 상동성이 높은 tRNA-Pro와 tRNA-Phe 염기서열 일부를 이용하여 oligonucleotide primer를 제작하였다. 그 결과 Duroc 품종의 D-loop 전체 유전자는 1,145 base pairs 였으며, 그 중간위치에 10bp의 Sus Scrofa-specific sequence (TACACGTGCG)가 10개 존재하고 있었다. 돌연변이 검출을 위하여 가장 변이가 심한 지역을 primer 제작하여 345 bp의 DNA 단편을 증폭하였으며, Single Stranded Conformation Polymorphism(SSCP) 분석은 8% polyacrylamide gel에서 200 V, 16시간 전기영동하여 ethidium bromide (EtBr)로 10분간 염색하여 UV image analyzer로 관찰하였다. 그 결과 두 개의 서로 다른 밴드유형을 관찰하였으며, 21개 부위에서 염기서열 변이가 관찰되었다. 이러한 결과는 유전적 다양성 변이를 검출하는데 SSCP 분석이 유용한 도구라고 사료된다.

Effective Family Shuffling Method Using Complementary DNA Fragments Produced by S1 Nuclease

  • Hong, Soon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.2004-2007
    • /
    • 2006
  • An efficient method for the in vitro reassembly of homologous DNA sequences is presented. The proposed method involves obtaining single strands of homologous genes and hybridizing them to obtain partially hybridized heteroduplex DNA; cleaving the single-stranded regions of the heteroduplex DNA using S1 nuclease to generate double-strand DNA fragments; denaturing the double-strand DNA fragments to generate single-strand DNA fragments; conducting a series of polymerase chain reactions (PCR) using the single-strand DNA fragments as internal primers and a mixture of homologous DNA as templates to obtain elongated reassembled DNA; and finally, amplifying the reassembled DNA by a PCR using terminal primers. As a result, DNA reassembly could be achieved between homologous genes with a sequence similarity as low as 78%.