• Title/Summary/Keyword: Single-stage ignition

Search Result 22, Processing Time 0.034 seconds

An Experimental Study on the Two Stage-Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • Kim, Hyung-Min;Ryu, Jea-Duk;Lee, Ki-Hyung;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.13-19
    • /
    • 2003
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthen. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct inject type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

  • PDF

An Experimental Study on the Two Stage Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • 이기형;김형민;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct injection type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

Parametric Studies on the Sensitivity of Single Isolated Aluminum Particle Combustion Modeling (단일 마그네슘 입자 연소 지배인자의 민감도 해석)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup;Yang, Hee-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.341-350
    • /
    • 2011
  • A simplified analytical study for micro-sized single metal particle combustion in air was conducted in the present study. The metal particle combustion consists of two distinct reaction regimes, ignition and quasi-steady burning, and the thermo-fluidic phenomena in each stage are formulated by virtue of the conservation and transport equations. When particle temperature reaches to 1200 K, ended an ignition stage and was converted at quasi-steady combustion stage. Effects of Initial particle size, convection, ambient pressure and temperature are examined and addressed with validation.

  • PDF

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

A Study on the Evaporation and Ignition of Single Fish Oil Droplet (단일액적 어유의 증발과 착화에 관한 연구)

  • Ra, Jin-Hong;Jang, Jae-Eun;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.64-68
    • /
    • 1991
  • In this paper, to percuss whether fish oil can substitute for marine fuel oil, the characteristics on the evaporation and ignition of 3 fish oils, Sardine oil, File fish oil and Alaska pollac oil, were investigated experimentally by suspending single fish oil droplel in hot atmosphere, and experiments on methanol and light oil were also carried out to compare the characteristics. The results abtained are summarized as follow; 1) Evaporation and ignition phenomena on the methanol and light oil by the present experimental method agreeded with the results of the earlier investigation. 2) The characteristic on evaporation and ignition of all 3 fish oils took the same pattern; in late stage of evaporation at atmospheric Temperature 55$0^{\circ}C$ droplet rapidly expanded and contracted, and then remained solid corbide, but in case of $650^{\circ}C$ rapidly expanded and ignitied, and then completly burned non-remained solid carbide. 3) As fish oil mixed with light oil (50% weight), in beginning stage of evaporation droplet depended on the characteristics of light oil, but in end stage depended on fish oil. 4) Ignition temperature of fish oil droplets was about 47$0^{\circ}C$, higher than about 25$0^{\circ}C$ of light oil, but atmospheric temperature to ignite droplet was about $650^{\circ}C$, lower than about 75$0^{\circ}C$ of light oil.

  • PDF

Flame Characteristics of Diesel Spray in the Condition of Partial Premixed Compression Ignition (부분 예혼합 압축착화 조건에서 디젤분무의 화염특성)

  • Bang, Joong Cheol;Park, Chul Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.24-31
    • /
    • 2012
  • Diesel engines exhaust much more NOx(Nitrogen Oxides) and PM(Particulate Matter) than gasoline engines, and it is not easy to reduce both NOx and PM simultaneously because of the trade-off relation between two components. This study investigated flame characteristics of the partial premixed compression ignition known as new combustion method which can reduce NOx and PM simultaneously. The investigation was performed through the analysis of the flame images taken by a high speed camera from the visible engine which is the modified single cylinder diesel engine. The results obtained through this investigation are summarized as follows; (1) The area of the luminous yellow flame was reduced due to the decrease of flame temperature and even distribution of temperature. (2) The darkish yellow flame zone caused by the shortage of the remaining oxygen after the middle stage of combustion was considerably reduced. (3) Since the ignition delay was shortened, the violent combustion did not occur and the combustion duration became shortened.

An Experimental Study on Flame Propagation along Non-premixed Vortex Tube (비예혼합 선형 와환에서의 화염 전파 특성에 관한 실험적 연구)

  • Yang, Seung-Yeon;Roh, Yoon-Jong;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.864-870
    • /
    • 2001
  • Flame propagation along vortex tube was experimentally investigated. The vortex tube was generated by the ejection of propane from a nozzle through a single stroke motion of a speaker and the ignition was induced from a single pulse laser. Non-reactive flow fields were visualized using shadow technique. From these images, vortex ring size and translational velocity were measured in order to determine the ignition time and position. Flame structure and flame speed were measured using high speed CCD camera. Flame speed was accelerated during the initial stage of flame kernel growth, and reached near constant value during steady propagation period. Near the completion of propagation, flame speed was decelerated and then extinguished. Flame speed along the non-premixed vortex tube was found to be linearly proportional to circulation, which was similar to that of the flame propagation along premixed vortex ring. Ignition position minimally affects the propagation characteristics. These imply that flame is propagating along the maximum speed locus expected to be along stoichiometric contour and also support the existence of tribrachial flames.

  • PDF

Single Stage Resonant Power Supply for Driving Magnetron Device (마그네트론 구동용 단일단 공진형 전원장치)

  • Jeong Jin-Beom;Yeon Jae-Eul;Kim Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.10
    • /
    • pp.625-633
    • /
    • 2004
  • This paper proposed a boost input type single stage resonant power supply for driving magnetron device. The proposed power supply can control both input power factor and output power at the same time. Also, because ZVS is achieved using the resonance between leakage inductance and resonant capacitance, switching losses are drastically reduced. To prevent breakdown or moding phenomenon of the magnetron due to excessive starting voltage, variable frequency ignition method is also proposed. Experimental results for the prototype power supply are presented and discussed to verify the validity of the proposed power supply.

Modeling of the Ignition and Combustion of Single Aluminum Particle (단일 알루미늄 연료 입자의 점화 및 연소 모델링)

  • Yang, Hee-Sung;Lim, Ji-Hwan;Kim, Kyung-Moo;Lee, Ji-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF

Parametric Studies on the Sensitivity of Single Isolated Aluminum Particle Combustion Modeling (알루미늄 입자 연소 지배인자의 민감도 해석)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.321-327
    • /
    • 2010
  • A simplified analytical modeling for micro-sized single metal particle combustion in air was conducted in the present study. The metal particle combustion consists of two distinct reaction regimes, ignition and quasi-steady burning, and the thermo-fluidic phenomena in each stage are formulated by virtue of the conservation and transport equations. Reliability of the model is shown by rigorous validation of the method with emphasis laid on the characterizing the commanding parameters. Effects of Initial particle size, initial oxide film thickness, convection, ambient pressure and temperature are examined and addressed with validation.

  • PDF