• Title/Summary/Keyword: Single-photon emission computed tomography

Search Result 152, Processing Time 0.024 seconds

Understanding the importance of cerebrovascular involvement in Kawasaki disease

  • Yeom, Jung Sook;Cho, Jae Young;Woo, Hyang-Ok
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.9
    • /
    • pp.334-339
    • /
    • 2019
  • Kawasaki disease (KD) is a systemic vasculitis in infants and young children. However, its natural history has not been fully elucidated because the first case was reported in the late 1960s and patients who have recovered are just now entering middle age. Nevertheless, much evidence has raised concerns regarding the subclinical vascular changes that occur in post-KD patients. KD research has focused on coronary artery aneurysms because they are directly associated with fatality. However, aneurysms have been reported in other extracardiac muscular arteries and their fate seems to resemble that of coronary artery aneurysms. Arterial strokes in KD cases are rarely reported. Asymptomatic ischemic lesions were observed in a prospective study of brain vascular lesions in KD patients with coronary artery aneurysms. The findings of a study of single-photon emission computed tomography suggested that asymptomatic cerebral vasculitis is more common than we believed. Some authors assumed that the need to consider the possibility of brain vascular lesions in severe cases of KD regardless of presence or absence of neurological symptoms. These findings suggest that KD is related with cerebrovascular lesions in children and young adults. Considering the fatal consequences of cerebral vascular involvement in KD patients, increased attention is required. Here we review our understanding of brain vascular involvement in KD.

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

99mTc-3PRGD2 SPECT/CT Imaging for Diagnosing Lymph Node Metastasis of Primary Malignant Lung Tumors

  • Liming Xiao;Shupeng Yu;Weina Xu;Yishan Sun;Jun Xin
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1142-1150
    • /
    • 2023
  • Objective: To evaluate 99mtechnetium-three polyethylene glycol spacers-arginine-glycine-aspartic acid (99mTc-3PRGD2) single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging for diagnosing lymph node metastasis of primary malignant lung neoplasms. Materials and Methods: We prospectively enrolled 26 patients with primary malignant lung tumors who underwent 99mTc-3PRGD2 SPECT/CT and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT imaging. Both imaging methods were analyzed in qualitative (visual dichotomous and 5-point grades for lymph nodes and lung tumors, respectively) and semiquantitative (maximum tissue-to-background radioactive count) manners for the lymph nodes and lung tumors. The performance of the differentiation of lymph nodes with and without metastasis was determined at the per-lymph node station and per-patient levels using histopathological results as the reference standard. Results: Total 42 stations had metastatic lymph nodes and 136 stations had benign lymph nodes. The differences between metastatic and benign lymph nodes in the visual qualitative and semiquantitative analyses of 99mTc-3PRGD2 SPECT/CT and 18F-FDG PET/CT were statistically significant (all P < 0.001). The area under the receiver operating characteristic curve (AUC) in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT was 0.908 (95% confidence interval [CI], 0.851-0.966), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.86 (36/42), 0.88 (120/136), 0.69 (36/52), and 0.95 (120/126), respectively. Among the 26 patients (including two patients each with two lung tumors), 15 had pathologically confirmed lymph node metastasis. The difference between primary lung lesions in patients with and without lymph node metastasis was statistically significant only in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT (P = 0.007), with an AUC of 0.807 (95% CI, 0.641-0.974). Conclusion: 99mTc-3PRGD2 SPECT/CT imaging may notably perform in the direct diagnosis of lymph node metastasis of primary malignant lung tumors and indirectly predict the presence of lymph node metastasis through uptake in the primary lesions.

A Numerical Study of Different Types of Collimators for a High-Resolution Preclinical CdTe Pixelated Semiconductor SPECT System

  • Jeong, Hyun-Woo;Kim, Jong Seok;Bae, Se Young;Seo, Kanghyen;Kim, Seung Hun;Kang, Seong Hyeon;Shin, Dong Jin;Lee, Chang-Lae;Kim, Kyuseok;Lee, Youngjin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2016
  • In single-photon-emission computed tomography (SPECT) with a pixelated semiconductor detector (PSD), not only pinhole collimators but also parallel-hole collimators are often used in preclinical nuclear-medicine imaging systems. The purpose of this study was to evaluate and compare pinhole and parallel-hole collimators in a PSD. For that purpose, we paired a PID 350 (Ajat Oy Ltd., Finland) CdTe PSD with each of the four collimators most frequently used in preclinical nuclear medicine: (1) a pinhole collimator, and (2) low-energy high-resolution (LEHR), (3) low-energy general-purpose (LEGP), and (4) low-energy high-sensitivity (LEHS) parallel-hole collimators. The sensitivity and spatial resolution of each collimator was evaluated using a point source and a hot-rod phantom. The highest sensitivity was achieved using LEHS, followed by LEGP, LEHR, and pinhole. Also, at a source-to-collimator distance of 2 cm, the spatial resolution was 1.63, 2.05, 2.79, and 3.45 mm using pinhole, LEHR, LEGP, and LEHS, respectively. The reconstructed hot-rod phantom images showed that the pinhole collimator and the LEHR parallel-hole collimator give a fine spatial resolution for preclinical SPECT with PSD. In conclusion, we successfully compared different types of collimators for a preclinical pixelated semiconductor SPECT system.

Sentinel lymph node mapping using tri-modal human serum albumin conjugated with visible dye, near infrared fluorescent dye and radioisotope

  • Kang, Se Hun;Kim, Seo-il;Jung, So-Youn;Lee, Seeyoun;Kim, Seok Won;Kim, Seok-ki
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.62-73
    • /
    • 2015
  • We developed an evans blue-indocyanine green-$^{99m}Tc$-human serum albumin conjugate for sentinel lymph node mapping and we describe its unique potential usage for clinical implications. This conjugate has combined the strengths of visible blue dye, near-infrared fluorescence and radioisotope into one single conjugate without any additional weakness/disadvantage. All the components of evans blue-indocyanine green-$^{99m}Tc$-human serum albumin are safe and of low cost, and they have already been clinically used. This conjugate was stable in the serum, it showed a long retention time in the lymphatic system and the lymph nodes showed a much higher signal-to-noise ratio after the conjugate was injected intradermally into the paw of mice. Both the single-photon emission computed tomography and near-infrared fluorescent images of the mice were successfully obtained at the same time as the excised sentinel lymph nodes showed blue color. The visual color, near-infrared fluorescence and gamma ray from this agent could be complementary for each other in all the steps of sentinel lymph node sampling: exploring and planning sentinel lymph node before excision with visualization of the exact sentinel lymph node location during an operation. Therefore, the triple modal agent will possibly be very ideal for sentinel lymph node mapping because of the high signal-to-noise ratio for non-invasive imaging and its complementary multimodal nature, easy preparation and safety. It is promising for clinical applications and it may have great advantages over the traditional single modal methods.

Spect Assessment of Regional Cerebral Perfusion Abnormality in Head Injury (두부외상 환자에서 HMPAO-SPECT를 이용한 국소 뇌혈류 변화의 평가)

  • Lee, Kyung-Han;Kim, Chul-Hee;Chang, Ha-Sung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.235-243
    • /
    • 1992
  • Patterns of abnormality in regional cerebral perfusion and its relation to clinical severity was evaluated with 32 head injury patients using $^{99m}Tc-HMPAO$ single photon emission tomography (SPECT). The findings were compared with computed tomography (CT) done within 48 hours of each SPECT study. The initial SPECT study was done within 7 days of injury in 16 cases, between 1 week and 2 months in 12, and after over 2 months in 4. Nineteen of the patients underwent followup SPECT and CT after a mean interval of 1 to 2 months. The initial SPECT showed abnormalities in 96% (31/32) of the patients while CT showed abnormal findings in only 81% (26/32). There were a total of 54 supratentorial SPECT lesions in all. Ninity percent (49/54) of these were of regional hypoperfusion, while 5 lesions showed focal hyperperfusion. The lesions were most often localized in the frontal and temporal lobes. Fifty five percent (30/54) were areas not detected as a lesion on CT. Cerebellar diaschisis was observed in 50% (16/32) of the patients. The degree of perfusion abnormality was quantified by the product of differential activity and a size factor. Correlation between the degree of perfusion abnormality and the clinical severity (Glasgow coma scale) failed to show statistical significance (p=0.053). The amount of change in the degree of perfusion abnormality on follow up SPECT was compared to the amount of change in clinical severity. Perfusion abnormality showed a tendancy to improve in most patients, and the degree of improvement showed significant correlation with the amount of clinical improvement (p < 0.01).

  • PDF

Metabolic impairment pattern analysis of the Alzheimer's disease (Alzheimer's Disease의 대사영상패턴 분석)

  • Juh, Ra-Hyeong;Lee, Chang-Uk;Chung, Yong-An;Choe, Bo-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.91-95
    • /
    • 2004
  • Several MRI studies have reported reductions in temporal lobe volumes in Alzheimer's disease (AD). Measures have been usually obtained with regions-of-interest (ROI) drawn manually on selected medial and lateral portions of the temporal lobes, with variable choices of anatomical borders across different studies. We used the automated voxel-based morphometry (VBM) approach to investigate gray matter abnormalities over the entire extension of the temporal lobe in 10AD patients (MM5E 22)and 22 healthy controls. Foci of significantly reduced gray matter volume in AD patients were detected in both medial and lateral temporal regions, most significantly in the right and left posterior parahippocarmpal gyri. At a more flexible statistical threshold (P<0.01, uncorrected for multiple comparisons), circumscribed foci of significant gray matter reduction were also detected in the right amygdala/enthorinal cortex, the anterior and posterior borders of the superior temporal gyrus bilaterally, and the anterior portion of the left middle temporal gyrus. These VBM results confirm previous findings of temporal lobe atrophic changes in AD, and suggest that these abnormalities may be confined to specific sites within that lobe, rather than showing a widespread distribution.

  • PDF

Optimization of Correction Factor for Linearization with Tc-99m HM PAO and Tc-99m ECD Brain SPECT (Tc-99m HMPAO와 Tc-99m ECD 뇌SPECT의 뇌혈류량 정량화에 사용되는 Linearization Algorithm의 Correction Factor 조사)

  • Cho, Ihn-Ho;Hayashida, Kohei;Won, Kyu-Chang;Lee, Hyoung-Woo;Watabe, Hiroshi;Kume, Norihiko;Uyama, Chikao
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.2
    • /
    • pp.237-243
    • /
    • 1999
  • We conducted this study to find the optimal correction factor(${\alpha}$) of Lassen's linearization algorithm which has been applied for correction of flow-limited uptake at a high flow range in $^{99m}Tc$ d,l-hexamethylpropy leneamine oxime(HMPAO) and $^{99m}Tc$ ethyl cysteinate dimer(ECD). Ten patients with chronic cerebral infarction were involved in this study. We obtained the corrected $^{99m}Tc$ HMPAO and $^{99m}Tc$-ECD brain SPECT(single photon emission computed tomography) using the algorithm with ${\alpha}$ values that varied from 0.1 to 10 and compared the results with regional cerebral blood flow determined by positron emission tomography (PET-rCBF). The multi-modal volume registration by maximization of mutual information was used for matching between PET-rCBF and SPECT images. The highest correlation coefficient between $^{99m}Tc$-HMPAO and $^{99m}Tc$-ECD brain uptake and PET-rCBF was revealed at ${\alpha}$ 1.4 and 2.1, respectively. We concluded that the ${\alpha}$ values of Lassen's linearization algorithm for $^{99m}Tc$-HMPAO and $^{99m}Tc$-ECD brain SPECT images were 1.4 and 2.1, respectively to indicate cerebral blood flow with comparison of PET-rCBF.

  • PDF

High-Performance Compton SPECT Using Both Photoelectric and Compton Scattering Events

  • Lee, Taewoong;Kim, Younghak;Lee, Wonho
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1393-1398
    • /
    • 2018
  • In conventional single-photon emission computed tomography (SPECT), only the photoelectric events in the detectors are used for image reconstruction. However, if the $^{131}I$ isotope, which emits high-energy radiations (364, 637, and 723 keV), is used in nuclear medicine, both photoelectric and Compton scattering events can be used for image reconstruction. The purpose of our work is to perform simulations for Compton SPECT by using the Geant4 application for tomographic emission (GATE). The performance of Compton SPECT is evaluated and compared with that of conventional SPECT. The Compton SPECT unit has an area of $12cm{\times}12cm$ with four gantry heads. Each head is composed of a 2-cm tungsten collimator and a $40{\times}40$ array of CdZnTe (CZT) crystals with a $3{\times}3mm^2$ area and a 6-mm thickness. Compton SPECT can use not only the photoelectric effect but also the Compton scattering effect for image reconstruction. The correct sequential order of the interactions used for image reconstruction is determined using the angular resolution measurement (ARM) method and the energies deposited in each detector. In all the results of simulations using spherical volume sources of various diameters, the reconstructed images of Compton SPECT show higher signal-to-noise ratios (SNRs) without degradation of the image resolution when compared to those of conventional SPECT because the effective count for image reconstruction is higher. For a Derenzo-like phantom, the reconstructed images for different modalities are compared by visual inspection and by using their projected histograms in the X-direction of the reconstructed images.

Daily adaptive proton therapy: Feasibility study of detection of tumor variations based on tomographic imaging of prompt gamma emission from proton-boron fusion reaction

  • Choi, Min-Geon;Law, Martin;Djeng, Shin-Kien;Kim, Moo-Sub;Shin, Han-Back;Choe, Bo-Young;Yoon, Do-Kun;Suh, Tae Suk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3006-3016
    • /
    • 2022
  • In this study, the images of specific prompt gamma (PG)-rays of 719 keV emitted from proton-boron reactions were analyzed using single-photon emission computed tomography (SPECT). Quantitative evaluation of the images verified the detection of anatomical changes in tumors, one of the important factors in daily adaptive proton therapy (DAPT) and verified the possibility of application of the PG-ray images to DAPT. Six scenarios were considered based on various sizes and locations compared to the reference virtual tumor to observe the anatomical alterations in the virtual tumor. Subsequently, PG-rays SPECT images were acquired using the modified ordered subset expectation-maximization algorithm, and these were evaluated using quantitative analysis methods. The results confirmed that the pixel range and location of the highest value of the normalized pixel in the PG-rays SPECT image profile changed according to the size and location of the virtual tumor. Moreover, the alterations in the virtual tumor size and location in the PG-rays SPECT images were similar to the true size and location alterations set in the phantom. Based on the above results, the tumor anatomical alterations in DAPT could be adequately detected and verified through SPECT imaging using the 719 keV PG-rays acquired during treatment.