• Title/Summary/Keyword: Single-leg landing

Search Result 23, Processing Time 0.018 seconds

Development of a Coarse Lunar Soil Model Using Discrete Element Method (이산요소법을 이용한 성긴 달토양 수치해석모델 개발)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.26-34
    • /
    • 2019
  • In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.

Analysis of Multi-Chained and Multiple Contact Characteristics of Foot Mechanisms in Aspect of Impulse Absorption (다수 체인과 다중 접촉 성격을 지닌 발 메커니즘에 대한 충격량 흡수 기반 해석)

  • Seo, Jong-Tae;Oh, Se Min;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • Foot mechanisms play the role of interface between the main body of robotic systems and the ground. Biomimetic design of the foot mechanism is proposed in the paper. Specifically, multi-chained and multiple contact characteristics of general foot mechanisms are analyzed and their advantages are highlighted in terms of impulse. Using Newton-Euler based closed-form external and internal impulse models, characteristics of multiple contact cases are investigated through landing simulation of an articulated leg model with three kinds of foot. It is shown that in comparison to single chain and less articulated linkage system, multi-chain and articulated linkage system has superior characteristic in terms of impulse absorption as well as stability after collision. The effectiveness of the simulation result is verified through comparison to the simulation result of a commercialized software.

The Effect of the Plantar Pressure on Dynamic Balance by Fatigue of Leg in the Subjects with Functional Ankle Instability (기능적 발목 불안정성시 하지 근피로에 의한 동적균형이 족저압에 미치는 영향)

  • Kim, Ho-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.734-742
    • /
    • 2016
  • Purpose : The present study was aimed at investigating the plantar pressure on dynamic balance of subjects with functional ankle instability following fatigue of lower leg. Methods : The subjects(30 university students) were divided into 2 groups ; functional ankle instability group(7males and 7females) and ankle stable group(9males & 7females) who could evaluate questionnaire. All the participants were evaluated muscle fatigue of lower leg by Biodex system III and distribution of plantar pressure by Zebris FDM-S system, The dynamic balance was tested by single-leg jump landing. This study were to measure of plantar pressure on dynamic balance with the difference between FAIG and control group following muscle fatigue. Results : In functional ankle instability group(FAIG), the post-fatigue was significantly higher than pre-fatigue in forefoot(p2,p3,p4) of plantar pressure on dynamic balance(p<0.05). The FAIG was significantly higher than the ASG in forefoot(p2, p3, p4) & lat midfoot(p6) of plantar pressure after fatigue in dynamic balance(p<0.05). The FAIG was significantly longer than the ASG in anteroposterior(AP) & mediolateral(ML) distance on center of pressure(CoP) after fatigue in dynamic balance(p<0.05). Conclusion : This study showed that FAIG were effected plantar pressure and center of pressure(CoP) by dynamic balance following muscle fatigue. Further study is needed to measure various age & work with ankle instability for clinical application.