• Title/Summary/Keyword: Single-Phase transformer

Search Result 211, Processing Time 0.026 seconds

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

A Study on the Algorithm for Single Phase Control of IGBT PWM Rectifier (IGBT PWM Rectifier의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Park, Jae-Beom;Tae, Dong-Hyun;Kim, Seung-Jong;Song, Joong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.26-33
    • /
    • 2016
  • Recently, the use of transformer-less UPS has increased to improve the efficiency of UPS. However, transformer-less UPS is required in three-phase four-wire input IGBT PWM rectifier and the existing three-phase three-wire PFC algorithm cannot be applied in the three-phase four-wire system due to the neutral current problem of UPS input. To control the three-phase four-wire input IGBT PWM rectifier, there are two existing algorithms: 3D SVM and single phase control method. These two algorithms have advantages/disadvantages in controlling the rectifier. The single phase control method is unstable for controlling the rectifier and the 3D SVM method has a problem that must increase the L value of the input-side inductor considerably. Therefore, this paper proposes digital single phase control technology and another new algorithm considering the d-q control, to improve the characteristics of the existing control algorithm. In addition, this paper performed a simulation and experiment based on the proposed control algorithm. The simulation results showed that the proposed technology can control three-phase four-wire IGBT PWM rectifier in a stable manner and can also reduce the neutral current. The proposed algorithm is a useful tool for controlling the three-phase four-wire IGBT PWM rectifier.

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.

3-D Analysis of Leakage Impedances in a 1MVA HTS Transformer (1MVA고온초전도 변압기의 3차원 누설임피던스 해석)

  • 김성훈;김우석;최경달;주형길;홍계원;한진호;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.200-202
    • /
    • 2003
  • In this paper, 3-D electromagnetic analysis of a single phase 1MVA 22.9kV/6.6kV High Temperature Superconducting(HTS) transformer with double pancake windings by using the OPERA 3D was accomplished. And in order to perform the analysis of leakage impedances of a 1MVA HTS transformer, the energy conservation method was used. The efficiency voltage regulation and % impedance voltage drop of a 1MVA HTS transformer were obtained by the analysis of leakage impedances.

  • PDF

Conceptual Design of an HTS large power transformer with continuously transposed coated conductors

  • Lee, Se-Yeon;Park, Sang-Ho;Kim, Woo-Seok;Lee, Ji-Kwang;Park, Il-Han;Chol, Kyeong-Dal;Hahn, Song-Yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.5-8
    • /
    • 2011
  • This paper shows results of a design work of a program that is to develop a large power single phase high temperature superconducting (HTS) transformer. The program forms a part of a national project in Korea. A target of the design work is an HTS power transformer with rated voltages of 154 kV/22.9 kV and material for windings is supposed to be coated conductor. The design results presents in this paper will include: 1)HTS winding structures for high voltage in liquid nitrogen, 2)design result of continuously transposed coated conductor (CTCC), 3)conceptual design of high voltage bushings, 4)cooling system. A feasibility study will succeed to this design work for construction of a prototype HTS power transformer with capacity/voltage of 33 MVA/154 kV.

Output Waveform Improvement of Double-Connected 3-Phase Voltage Source Inverter by Single-Phase Inverter (단상 인버터의 동작에 의한 이중접속 3상 전압원 인버터의 출력파형 개선)

  • 최세완;양승욱
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper proposes a new double-connected 3-phase voltage source inverter with improved output voltage waveform. An auxiliary single-phase inverter injects a ripple voltage into the double-connected inverter to converter 12-step operation to 36-step operation. The KVA rating of the output phase-shifting transformer is reduced by employing a harmonic canceling reactor. The whole rectifier-inverter system including the proposed technique is introduced, and the experimental results are provided.

  • PDF

A Study on the Soft Starting Switch of Single Phase Condenser Induction Motor Using TRIAC (트라이액을 이용한 단상 유도전동기의 Soft Starting Switch에 관한 연구)

  • 강응석;신대철;최종문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2004
  • In general the starting current of single phase induction motor is 3 to 6times of the rated current It make flickering an electric lamp, dispersion a TV screen, insulation destructing an electric motor and momentary blazing of house wiring. Thus it happens losing an electric power loss and reducing an efficiency and a life of home electrical apparatus. In this paper, we proposed the method of reducing staring current with 3.7(%) using TRIAC and ACCT(alternated current transformer) in order to improve the above problem And also we verified semipermanent system with using semiconductor element.

Design of 1.5kW PCS Using Interleaved Full-Bridge Converter and Single Phase Half-Bridge Inverter (인터리브드 풀 브릿지 컨버터와 단상 하프 브릿지 인버터를 이용한 1.5kW급 PCS 설계)

  • Na, Kwang-Su;Na, Jong-Kuk;Lee, Hee-Jun;Shin, Soo-Cheol;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.403-404
    • /
    • 2013
  • In this paper, a PCS which consists of high boost interleaved full-bridge converter and single phase half-bridge inverter is proposed. Proposed PCS is using two full bridge converter modules. PCS consists of parallel input / serial output. It can reduce turn ratio of high frequency transformer. In this paper, PCS which is using 1.5[kW] interleaved full-bridge converter and single phase half bridge inverter is designed and verified stability of system through experiment.

  • PDF

Single Phase Power Circuit Analysis of a Series Voltage Compensator (직렬형 전압보상기의 단상 전력회로 해석)

  • Lim, Yong-Bin;Lim, Su-Saeng;Lee, Eun-Woong;Kim, Hong-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.302-304
    • /
    • 1999
  • Voltage sag and swell are the most severe factors affecting power quality in distribution systems. This paper discusses an approach to ensure a high quality power supply to critical loads appling voltage-sag compensator. The proposed system consists of a PWM voltage source inverter, connected in series with the line through a single-phase transformer. The operation Principle and Power circuit configuration of the proposed voltage sag compensator are introduced. And then the transfer function of compensator is derived from simplified single phase power circuit, and simulated so that the benefits of this proposed compensator is confirmed through the open loop response.

  • PDF

Evaluation and Experimental Production of Single-Phase Full-wave Rectification Type for X-ray Equipment of High Precision (고정밀도의 단상전파정류형 X선 장치의 제작 및 평가)

  • Han, Dong-Kyoon;Jung, Jae-Eun;Choi, Jun-Gu;Seoun, Youl-Hun;Ko, Shin-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.413-419
    • /
    • 2011
  • Diagnosis X-ray equipment localized at 1950's but it is developed suddenly at 1960's with demand together. Manufacture of Diagnostic X-ray equipment is controled by the KS regulation and the Ministry of Health and Welfare because of hazardous element etc. exposure by radiation. Most of diagnostic X-ray equipment ware single phase and three phase full-wave rectification but from 1980's it transforms it was exchanged in inverter type X-ray equipment. Inverter type X-ray equipment produces approximately 50~80% more average photon intensity then single phase full-wave rectification and the accuracy is high. But from a clinic it dose not use because expensive therefor the efficiency improvement of single phase full-wave rectification is necessary. We produced single phase full-wave rectification X-ray equipment control unit, high tension transformer, filament heating transformer, rectification circuit, high tension cable and others and evaluated efficiency, in result which is excellent compare with Rule of Safety Management and KS regulation.