• Title/Summary/Keyword: Single-Phase Induction Motor

Search Result 220, Processing Time 0.026 seconds

Vector Control of Single Phase Induction Motor using PV System (PV 시스템을 이용만 단상유도전동기의 벡터제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-58
    • /
    • 2009
  • This paper presents the vector control of single phase induction motor(SPIM) to operate water pumping system using PV system with a maximum power point tracking(MPPT). The water pumping system uses a variable speed SPIM driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

Voctor Control of Single Phase Induction Motor using PV system (PV 시스템을 이용한 단상유도전동기의 벡터제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.195-197
    • /
    • 2007
  • The water pumping system uses a variable speed single phase induction motor driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage$(V_{dq})$, current$(I_{dq})$, speed of motor and torque.

  • PDF

Radial Force Analysis of a Single-Phase Permanent Split Condenser Induction Motor with skewed slots (사구 슬롯이 있는 콘덴서 구동형 단상 유도 전동기의 Radial force 해석)

  • Chang, Jung-Hwan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.241-243
    • /
    • 1996
  • This papar presents an analysing method of radial force densities acting on each stator tooth of an induction motor with skewed slots. Two-dimensional finite element method is used for electromagnetic Held analysis of an induction motor, and skew effects are considered by coupling several disks cut by planes perpendicular to the shaft. Radial force densities as a source of vibration are calculated along the surface elements of each stator tooth and its time harmonics are examined by discrete Fourier decomposition.

  • PDF

Identification of Parameters for Induction Motor at Standstill (완전 정지형 방식에 의한 유도 전동기 파라미터 오토튜닝)

  • Kim J.H.;Hong C.O.;Kwon B.H.;Lim K.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.900-903
    • /
    • 2003
  • An identification method of induction motor parameters such as rotor time constant and mutual inductance at standstill condition is discussed assuming that stator resistance and leakage has already been obtained applying two different DC voltage and single phase voltage to the induction motor, respectively. This proposed scheme is implemented by means of Model Reference Adaptive Control (MRAC) technique, which uses a rotor flux equation in voltage model as a reference model and one in current model and is demonstrated through experiment.

  • PDF

Analysis on the characteristics the induction motor under mechanical unbalance of a rotor (유도형 모터 회전자의 기계적 불형형 특성해석)

  • Jang, S.M.;Lee, S.L.;Seo, J.H.;Jeong, S.S.;Kim, K.J.;Park, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.296-298
    • /
    • 1998
  • The mechanical unbalance of the rotor in motors generate vibrations and make its shortened their life, therefore, it is important that search for a cause of the vibration in the point of economics. In this paper, to reduce the vibration we will analyse the unbalance magnetic pull in induction motor. Namely, the electromagnetically generated forces, the airgap flux density distribution in a single phase induction motor is calculated by analytical and numerical method.

  • PDF

The Characteristics Analysis of Single Phase LSPM Synchronous Motor by changing Design Parameter (단상 LSPM 동기 전동기의 설계 변수 변화에 따른 특성 해석)

  • Hong, Sook-Hyun;Ko, Kwon-Min;Park, Chan-Bae;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.86-88
    • /
    • 2003
  • The efficiency of electric machine is important due to increase of interest about energy saving. Single Phase Line Start Permanent Magnet Synchronous Motor has high efficiency and power factor. LSPMSM offer a high efficiency as compared induction motor which are used in the home appliance. The analysis and design of LSPMSM is difficult because of unbalanced rotating magnetic field, nonlinear characteristics and rotor saliency. To consider these effects, F.E.M(Finite Element Methods) is coupled equivalent circuit methods. In this paper, a methods of analysis and design using F.E.M and equivalent circuit is represented.

  • PDF

A Study on the Application and Characteristics of a Full Bridge Inverter with Low Pass LC Filter (저역통과 LC필터를 가진 전브리지형 인버터의 특성과 응용에 대한 연구)

  • 박진길;노영오;신원길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.99-111
    • /
    • 1993
  • In this paper, the current waveform and dynamic characteristics of the proposed system which is composed of a full bridge inverter and low pass LC filter is investigated through the results of computer simulation and experiment to find out the good performance of variable speed AC motor. By the experiment results, it is confirmed that the load current of pseudo sine waves is to be got by the proposed low pass LC filter and the speed of single phase AC motor driven by a full bridge inverter can be smoothly controlled by use of digital PID controller.

  • PDF

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

A Study on the Potable Rotor Diagnosis System for Induction Machines (유도기 설비의 휴대용 회전자 진단 시스템 연구)

  • Hyun, Doosoo;Yoon, Min-han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1657-1662
    • /
    • 2017
  • Rotor bar faults in induction machines, which are a part of main distribution of power system, can even stop the entire system by causing contact between a stator and a rotor. There are two methods of diagnosing rotor bar faults in induction motors, online and offline tests, and existing diagnosis methods have many limitations which can lead to misdiagnosis. This paper proposes a potable rotor bar faults diagnosis system based on single phase rotation test, one of offline test methods, which detects rotor bar faults through impedance interpretation by exciting AC current in a stator winding. The test was conducted on a motor of 0.4kW in the laboratory and a motor of 1500kW in industry field.

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.