• 제목/요약/키워드: Single-Phase Heat Transfer

검색결과 137건 처리시간 0.019초

수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구 (Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate)

  • 김영찬;서태원
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

소구경 원관내의 R-22 응축열전달에 대한 실험 (Experiments on R-22 condensation heat transfer in small diameter tubes)

  • 김내현;조진표;김정오;김만회;윤재호
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.271-281
    • /
    • 1998
  • In this study, condensation heat transfer experiments were conducted with two small diameter(ø7.5, ø4.0) tubes. Comparison with existing in-tube condensation heat transfer correlations indicated that the correlations overpredict the present data. For example, Akers correlation overpredicts the data upto 104%. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300kg/$m^2$s, the difference was 12%. The pressure drop data of the small diameter tubes ware highly(two to six times) overpredicted by the Lockhart-Martinelli correlation. Subcooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

수평 사각 마이크로채널 내에서의 유동 비등 열전달 (Flow Boiling Heat Transfer in a Horizontal Rectangular Microchannel)

  • 허철;김무환
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1043-1050
    • /
    • 2006
  • An experimental investigation was performed to study flow boiling heat transfer of deionized water in a microchannel. Measurement and evaluation of boiling heat transfer coefficients were carried out using a single horizontal rectangular microchannel having a hydraulic diameter of $100{\mu}m$. Tests were performed for mass fluxes of 90, 169 and 267 $kg/m^2$s and heat fluxes of 200-700 $kW/m^2$. Test results showed that the measured boiling heat transfer coefficients had no dependence on mass flux and vapor quality. Most macro-channel correlations of boiling heat transfer coefficient did not provide reliable predictions.

다분지 미니 채널 열교환기의 액단상 열전달 특성에 관한 연구 (A study of heat transfer characteristics on the Multi-pass Heat exchanger with Minichannel)

  • 임용빈;이승훈;김정훈;김종수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.357-362
    • /
    • 2006
  • This research focused on the multi-pass heat exchanger using the minichannel possessing the spring fin. An air-water was used as working fluid. The characteristics of liquid single phase heat transfer were verified. The compact heat exchanger (heat transfer area density : ${\beta}=2,146 m^2/m^3$), based on the shape of header(Top combining header), 63 minichannels ($D_i$ : 1.4 mm, L : 0.25 m) and the air side adopting the copper wire spring fin, was fabricated. The heat transfer area density of the air side was improved up to 161% when compared with the conventional fin-tube heat exchanger that adopts the heat transfer tube with the inner diameter of 5 mm. With regard to heat transfer performance, heat transfer rate per unit volume increased up to 142% when compared with the fin-tube heat exchanger adopting the heat transfer tube with the inner diameter of 5 mm.

  • PDF

액체 충돌제트의 표면조도변화에 따른 이상유동 열전달 특성 (Effect of Surface Roughness on Two-Phase Flow Heat Transfer by Confined Liquid Impinging Jet)

  • 임성환;신창환;조형희
    • 설비공학논문집
    • /
    • 제17권8호
    • /
    • pp.714-721
    • /
    • 2005
  • The water jet impingement cooling with boiling is one of the techniques to remove heat from high heat flux equipments. The configuration of surface roughness is one obvious condition of affecting the performance on heat transfer in nucleate boiling, The present study investigates the water jet impinging single-phase convection and nucleate boiling heat transfer for the effect of surface roughness to enhance the heat transfer in free surface and submerged jet. The distributions of the averaged wall temperature as well as the boiling curves are discussed. Jet velocities are varied from 0.65 to 1.7 m/s. Surface roughness by sand blast and sand paper varies from 0.3 to 2.51 ${\mu}m$ and cavity shapes on surface are semi-circle and v-shape, respectively The results showed that higher velocity of the jet caused the boiling incipience to be delayed more. The incipient boiling and heat transfer increase with increasing surface roughness due to a large number of cavities of uniform size.

Experimental Investigation of R-22 Condensation in Tubes with Small Inner Diameter

  • Kim, Nae-Hyun;Cho, Jin-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.45-54
    • /
    • 1999
  • In this study, condensation heat transfer experiments were conducted in two small diameter (ø17.5, ø4.0) tubes. Comparison with the existing in-tube condensation heat transfer correlations indicated that these correlations over predict the present data. For example, Akers correlation over predicted the data up to 104 %. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300 kg/$m^2$s, the difference was 12 %. The pressure drop data of the small diameter tubes were highly (two to six times) over predicted by the Lockhart-Martinelli correlation. Sub-cooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

원형관내 나노유체의 강제대류에 관한 수치적 연구 (NUMERICAL STUDY OF NANOFLUIDS FORCED CONVECTION IN CIRCULAR TUBES)

  • 최훈기;유근종
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.37-43
    • /
    • 2014
  • In this paper, hydraulic & thermal developing and fully developed laminar forced convection flow of a water-$Al_2O_3$ nanofluid in a circular horizontal tube with uniform heat flux at the wall, are investigated numerically. A single phase model employed with temperature independent properties. The thermal entrance length is presented in this paper. The variations of the convective heat transfer coefficient and shear stress are shown in the entrance region and fully developed region along different nanoparticles concentration and Reynolds numbers. Convective heat transfer coefficient for nanofluids is larger than that of the base fluid. It is shown that heat transfer is enhanced and shear stress is increased as the particle volume concentration increases. The heat transfer improves, as Reynolds number increases.

초임계 상태 이산화탄소 난류유동의 새로운 열전달계수 상관식 개발 (Development of a New Correlation for the Heat Transfer Coefficient of Turbulent Supercritical Carbon Dioxide Flow)

  • 임홍영;최영돈;김용찬;김민수
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.274-286
    • /
    • 2003
  • Numerical simulations are performed to investigate the turbulent convective heat transfer of the supercritical carbon dioxide flows in vertical and horizontal square ducts. The gas cooling process at the supercritical state experiences a sudden change in thermodynamic and transport properties. This results in the extraordinary variations of the heat transfer coefficients in the supercritical state, which are much different from those of single or two phase flows. Algebraic second moment closure which can include the effects of large thermophysical property variations of carbon dioxide and of buoyancy is employed to model the Reynolds stresses and turbulent heat fluxes in the governing equations. The previous correlations for the turbulent heat transfer coefficient for the supercritical carbon dioxide flows couldn't reflect the buoyancy effect. The present results are used to establish a new heat transfer coefficient correlation including the effects of large thermophysical property variation and buoyancy on in-duct cooling process of supercritical carbon dioxide.

소형 공조용 증발기의 특성 해석 (Analysis of Characteristics on Small Air-Conditioning Type Evaporator)

  • 김재돌;윤정인;김영수;문춘근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.573-580
    • /
    • 2001
  • When investigating optimum design of the evaporator in the refrigeration and heat pump systems, there is still lack of data for the dynamic characteristics of the evaporator, This is due to the fact that the static characteristics in the evaporator are absolutely difficult to measure and are burdened with uncertainties. In this study, the simulation works for static characteristics in the evaporator of small air conditioner are carried out to obtain the data of dynamic characteristics. In the simulation, the test evaporator is divided by two-phase evaporating region and single-phase heating region. The major parameters are refrigerant flow rate, heat transfer coefficient of air, air velocity and air temperature. The results show that the calculation method for tube length is an easy-to-use to model analysis of static characteristics and to determine state of refrigerant in the evaporator. The effects of the four parameters on the length of evaporating completed point and heat flow rate to the evaporator are clarified.

  • PDF

사각 마이크로 채널의 단상 유동 열전달 특성 연구 (Study on Heat Transfer Characteristics for Single-phase Flow in Rectangular Microchannels)

  • 문지현;김선창
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.891-896
    • /
    • 2011
  • 본 연구에서는 사각 마이크로 채널의 열전달 특성을 연구하기 위한 실험을 수행하였다. 실험에 사용된 시료의 채널 수력직경은 $700{\mu}m$이며, 채널의 개수는 20개이다. 작동유체는 물이며, 작동유체의 입구 온도는 $20^{\circ}C$ 이다. 실험 변수는 Reynolds 수 400 ~ 800 및 열 유속 35 ~ 85 kW/$m^2$ 이다. 결과로, Reynolds 수가 큰 경우일수록 대류 열전달 계수가 증가하는 것으로 나타났으며, 열적으로 완전히 발달 된 영역에 대하여 대류 열전달 계수는 약 4.6 ~ 6.4 kW/$m^2^{\circ}C$로 나타났다. 또한, 사각 마이크로 채널에서의 열적 입구길이는 Reynolds 수가 커지는 경우일수록 길어지는 것을 알 수 있었으나, 열 유속의 변화는 입구길이에 영향을 미치지 않는 것으로 나타났다. 본 연구의 결과로 완전히 발달된 유동영역에 대하여 사각 마이크로 채널의 열적 특성을 나타내기 위한 Nusselt 수 상관식을 제안하였다.