• Title/Summary/Keyword: Single-Phase

Search Result 5,311, Processing Time 0.034 seconds

Steady-State Performance Improvement of Single-Phase PWM Inverters Using PLL Technique (PLL 기법을 이용한 단상 PWM 인버터의 정상상태 성능개선)

  • 정세교;이대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.356-363
    • /
    • 2004
  • This paper presents a precision voltage control technique of a single phase PWM inverter for a constant voltage and constant frequency(CVCF) applications. The proposed control scheme employs an additional phase-locked loop(PLL) compensator which is constructed using the output capacitor voltage and current. The computer simulation and experiment are carried out for the actual single-phase PWM inverter and it is well demonstrated from these results that the steady-state performance and total harmonic distortion(THD) are remarkably improved by employing the proposed technique.

The design of a torque controller for single phase induction motor using phase angle (위상각제어에 의한 단상유도전동기의 토크제어기설계)

  • Lim, Y.C.;Choi, C.H.;Na, S.H.;Jung, Y.G.;Chang, H.C.;Chang, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.908-911
    • /
    • 1993
  • The single-Phase induction motor is widely used in many light duty applications. especially in home and the office. At present, many applications which use these motor require continuously adjustable speed control. In the general, the speed control of single-phase induction motor is accomplished at a few discrete speeds by using tapped-windings, pole switching or gear. These techniques is inefficient and complicated. In this paper, auxiliary winding voltage phase angle of single-phase induction motor is used to continuously adjust electromagnetic torque. The analysis includes the determination of the relationship between the auauxiliary winding voltage phase angle and torque. Simulation results of the motor's torque-speed characteristics using the controlled auxiliary winding supply are shown and discussed. The drive is tested using a dynamometer to experimentally verify the results of the theory and simulations.

  • PDF

Phase Current Reconstruction Techniques for Two-Phase Inverters using a Single Current Sensor

  • Cho, Young-Hoon;Cho, Kwan-Yuhl;Mok, Hyung-Soo;Kim, Kyeong-Hwa;Lai, Jih-Shen
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.837-845
    • /
    • 2011
  • This paper proposes phase current reconstruction techniques for two-phase two-leg and two-phase four-leg inverters using a single current sensor. In the proposed methods, one phase current is sampled simultaneously with a particular branch current by using only one current sensor, and then current reconstruction algorithms are applied to extract the information on two phase currents from the sensor output. The sampled current information is periodically updated at the peak and the valley of the triangular carrier waveform in each switching cycle of pulse-width modulation (PWM). The voltage vector spaces where the phase currents can be reconstructed are evaluated. Compared to the existing method using two individual current sensors in two phases, the proposed schemes can save implementation cost since it is possible to remove one current sensor. In addition, the proposed methods are free from gain discrepancy issues between two current sensors. Simulations and experiments show excellent current reconstruction performance of the proposed methods.

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.

Definition of Power Quality Factors at The Point of Common Coupling in Single-Phase Systems and Three-Phase Systems

  • Kim Hyosung;Blaabjerg Frede;Bak-Jensen Birgitte
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.489-496
    • /
    • 2001
  • This paper proposes an unified definition of powers for various circuit conditions such as balanced/unbalanced, sinusoidal/non-sinusoidal, and linear/nonlinear, for single-phase systems and three-phase systems. Conventional reactive power is more classified into an interactive power and a scattering power. These powers are defined both in the time domain and the frequency domain consistently, and agree well with the conservation law. Several important power quality factors are defined to measure and evaluate the power quality for the various circuits in the single-phase and three-phase systems. Simulation results show the power quality factors can evaluate and classify the various circuit conditions clearly.

  • PDF

New single-phase Phase-Locked Loop system composed of Adaptive Linear Combiner (Adaptive Linear Combner로 구성된 새로운 단상 Phase Locked Loop 시스템)

  • Bae B. Y.;Lee B. K.;Baek S. T.;Han B. M.;Kim H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.583-586
    • /
    • 2004
  • A typical method to control the single-phase power converter system is to utilize the zero-crossing PLL. However, this method is vulnerable to the voltage disturbance and affects the performance of controller This paper proposes a new single-phase PLL system that is composed of the adaptive linear combiner and the PI control. The operational principle was analyzed through theoretical approach and the performance was verified through simulations with MATLAB. The proposed PLL system shows rapidness and robustness in control under the voltage disturbances such as the sag, harmonics, and phase jump.

  • PDF

Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 영구자석형 유도동기기의 정상상태 특성해석)

  • Kang, Gyu-Hong;Nam, Hyuk;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

A Study on the SCR Frequency Converter With a Rotating Distributor (회전접촉자를 사용한 SCR 주파수 변환기에 관한 연구)

  • Chung Yon Tack
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.43-53
    • /
    • 1975
  • This paper describes a converter, which combines SCR bridge type rectifier circuit with a rotating distributor. This type of converter produces an adjustable low frequency output of three phase or single phase, from three phase or single phase power source. Output-waveforms of this converter are multi-pulse in three phase output, and square wave in single phase output. Problems about the operation of static switches, a commutation and output-waveforms are investigated, and experimental results verify that frequency can be adjusted satisfactorily from zero to 20 (Hz) and the expected output-waveforms are obtained without sparking on the distributor under various loading conditions. This converter can be utilized to low speed control of A.C. motors, and other lowfrequency loads.

  • PDF

Characteristic Analysis of Single Phase SRM Using Fourier Series (퓨리에 급수를 이용한 단상 SRM 특성 해석)

  • Lee, Jong-Han;Lee, Eun-Woong;Kim, Yong-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.80-82
    • /
    • 2004
  • The single phase switched reluctance motor(SRM) is more simpler and robust in the structure than poly phase SRM. It has the merits that it reduces the switching elements and the energy density per volume is very high. Recently, it has been researched and developed in various types and starting method due to the technique of power electronics and the computer added design. This paper presents a analytical representation of the phase inductance of a single phase SRM, as function of position and current, taking into account the non-linearity of the magnetic circuit. the method is based on Fourier series expansion. Analytical expressions for the calculation of instantaneous phase inductance, flux linkage, coenergy and electromagnetic torque as a function of rotor position and winding currents are derived.

  • PDF