• 제목/요약/키워드: Single-Frame PTV

검색결과 7건 처리시간 0.021초

단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석 (Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry)

  • 이창식;이기형;임경수;전문수
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

입자추적법을 이용한 가솔린 기관의 실린더 내 정상유동 해석 (Analysis of In-Cylinder Steady Flow for Gasoline Engine Using Particle Tracking Velocimetry)

  • 정구섭;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.34-43
    • /
    • 2001
  • Analysis and control of intake charge motion such as swirl and tumble are very important to improve the performance of gasoline engines. In this paper, single frame double exposure PTV(particle tracking velocimetry) is used to investigate intake flow characteristic in a steady flow test rig of gasoline engine with 2-valve and pent-roof combustion chamber. To validate this PTV method, we confirmed reliability of this PTV method using chopper, and coaxial burner experiments. The velocity Held of intake flow is measured with the intake valve lift variation. It is shown that maximum flow velocity is increased and tumble flow become stronger than inverse tumble flow as valve lift increase.

  • PDF

Investigation of In-Cylinder Flow Patterns in 4 Valve S. I. Engine by Using Single-Frame Particle Tracking Velocimetry

  • Lee, Ki-hyung;Lee, Chang-sik;Chon, Mun-soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.108-116
    • /
    • 2001
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry. Thus, the quantitative analysis of the in-cylinder flow characteristics plays an important role in the improvement of engine performances and the reduction of exhaust emission. In order to obtain the quantitative analysis of the in-cylinder gas flows for a gasoline engine, the single-frame particle tracking velocimetry was developed, which is designed to measure 2-dimensional gas flow field. In this paper, influences of the swirl and tumble intensifying valves on the in-cylinder flow characteristics under the various intake flow conditions were investigated by using this PTV method. Based on the results of experiment, the generation process of swirl and tumble flow in a cylinder during intake stroke was clarified. Its effect on the tumble ratio at the end of compression stroke was also investigated.

  • PDF

상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법 (Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble)

  • 박상민;진송완;김원태;성재용;유정열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF

단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측 (Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method)

  • 성재용;박상민;유정열
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF

단일 카메라 입자영상유속계를 이용한 이상유동 기포율 측정방법 (On the Measurement Technique of Void Fraction by Single Camera Two Phase PIV)

  • 최동환;성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1558-1563
    • /
    • 2004
  • A measurement technique for the void fraction and the bubble dynamics in gas-liquid two-phase flows has been proposed using a time-resolved two-phase PIV system. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side image into the front view with the help of a $45^{\circ}$ oriented mirror. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was applied. Consequently, the present technique shows good feasibility for the measurements of the volume fractions, mean diameters, aspect ratios and velocities of the bubbles at the three-dimensional point of view.

  • PDF

단일 카메라를 이용한 이상유동 기포율 측정방법의 개발과 응용 (A Void Fraction Measurement Technique by Single Camera and Its Application)

  • 최동환;유정열;송진호;성재용
    • 대한기계학회논문집B
    • /
    • 제31권11호
    • /
    • pp.904-911
    • /
    • 2007
  • A measurement technique fur void fraction has been proposed using a time-resolved two-phase PIV system and the bubble dynamics has been investigated in gas-liquid two-phase flows. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side view image on a $45^{\circ}$ oriented mirror to be juxtaposed with the front view image. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was adopted. The present technique is applied to freely rising bubby flows in stagnant liquid. The results show that the increase of bubble flow rate gives rise to the increase of bubble size and rising velocity at first. If it goes over a certain level, the rising velocity becomes constant and the horizontal velocity grows bigger instead due to the obstruction of other bubbles.