• Title/Summary/Keyword: Single strand

Search Result 286, Processing Time 0.024 seconds

Kaempferol Inhibits Enterovirus Proliferation through MAPK Signal Regulation (Kaempferol의 MAPK 신호 조절을 통한 심근염 유발 엔테로바이러스 증식 억제)

  • Jang, Jin-Hwa;Jeong, Hae-In;Lim, Byung-Kwan;Nam, Sang-Jip
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • We investigated the efficacy of single compound of plant extract in coxsackievirus B3 (CVB3) infection. CVB3 is a main cause of Hand-foot-mouth diseases (HFMD) and viral myocarditis in children and adult. Several single compounds of plant extract were purified by HPLC and tested as antiviral drug candidate. Among them, kaempferol was selected to effective anti-enterovirus compound by HeLa cells survival assay. CVB3 infected HeLa cells were treated with kaempferol ($100{\mu}g/ml-100ng/ml$) and their antiviral effect was confirmed. After 16 hours of treatment, HeLa cells were lysed and proteins were extracted for western blot analysis. CVB3 viral capsid protein VP1 production and transcription factor eIF4G-1 cleavage was significantly decreased in $100{\mu}g/ml$ kaempferol treatment. Virus replication was observed by virus RNA amplification. Kaempferol strongly reduced virus positive and negative strand RNA amplification. Moreover, MAPK signal induced by CVB3 infection, pERK and pmTOR, kaempferol treatment significantly inhibited the activity. Plant extract single compound, kaempferol, is a strong candidate to be developed non-toxic anti-enterovirus treatment agent.

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress

  • Khanra, Kalyani;Chakraborty, Anindita;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8177-8186
    • /
    • 2016
  • The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta ($pol{\beta}{\Delta}_{208-304}$) specific for ovarian cancer. $Pol{\beta}{\Delta}_{208-304}$ has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. $Pol{\beta}{\Delta}_{208-304}$ cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards $H_2O_2$ and UV when compared with HeLa cells alone. It has been shown that cell death in $Pol{\beta}{\Delta}_{208-304}$ transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

Association of Two Polymorphisms of DNA Polymerase Beta in Exon-9 and Exon-11 with Ovarian Carcinoma in India

  • Khanra, Kalyani;Panda, Kakali;Bhattacharya, Chandan;Mitra, A.K.;Sarkar, Ranu;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1321-1324
    • /
    • 2012
  • Background: DNA polymerase beta ($pol{\beta}$) is a key enzyme in the base excision repair pathway. It is 39kDa protein, with two subunits, one large subunit of 31 kDa having catalytic activity between exon V to exon XIV, and an 8 kDa smaller subunit having single strand DNA binding activity. Exons V to VII have double strand DNA binding activity, whereas exons VIII to XI account for the nucleotidyl transferase activity and exons XII to XIV the dNTP selection activity. Aim: To examine the association between $pol{\beta}$ polymorphisms and the risk of ovarian cancer, the present case control study was performed using 152 cancer samples and non-metastatic normal samples from the same patients. In this study, mutational analysis of $pol{\beta}$ genomic DNA was undertaken using primers from exons IX to XIV - the portion having catalytic activity. Results: We detected alteration in DNA polymerase beta by SSCP. Two specific heterozygous point mutations of $pol{\beta}$ were identified in Exon 9:486, A->C (polymorphism 1; 11.18%) and in Exon 11:676, A->C (polymorphism 2; 9.86%). The correlation study involving polymorphism 1 and 4 types of tissue showed a significant correlation between mucinous type with a Pearson correlation value of 4.03 (p=0.04). The association among polymorphism 2 with serous type and stage IV together have shown Pearson ${\chi}^2$ value of 3.28 with likelihood ratio of 4.4 (p=0.07) with OR =2.08 (0.3-14.55). This indicates that there is a tendency of correlation among polymorphism 2, serous type and stage IV, indicating a risk factor for ovarian cancer. Conclusion: Hence, the results indicate that there is a tendency for $pol{\beta}$ polymorphisms being a risk factor for ovarian carcinogenesis in India.

Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

  • Lee, Jae-Young;Kim, Dae-Kwan;Ko, Jeong-Jae;Kim, Keun Pil;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (${\gamma}H2AX$), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process.

Comet Assay to Detect the DNA Breakages in the Tissue of the Purple Clam ( Saxidomus purpuratus) and the Blood of the Olive Flounder (Paralichthys olivaceus) Exposed to 5 PAHs

  • Lee, Taek-Kyun;Kim, So-Jung;Park, Eun-Seok;Rora Oh;Yun, Hee-Young;Man Chang
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.159-159
    • /
    • 2003
  • Comet assay is a potential monitoring tool because DNA strand breakage may be produced by a wide range of agents. The comet assay, also called the single-cell gell electrophoresis (SCGE) assay, is rapid and sensitive method for the detection of DNA damage in cells. This study was performed for the identification of DNA damage in the cells from flounders and clams exposed to PAHs. As a control experiments, flounder and clam cells were exposed to $H_2O$$_2$. The cells exposed to $H_2O$$_2$ were displayed a typical nuclei movement DNA damage of cells were significantly increased when the isolated cells from the blood of flounders and the tissue of clams were in vitro exposed to the different concentrations (5, 10, 50, 100 ppb) of five kinds of PAHs (benzo[a]pyrene, pyrene, fluoranthene, anthrancene, and phenanthrene). For the in vivo test, flounders and clams were exposed to the different concentrations of BaP for 4 days. The results showed that DNA strand breakage was effected by the concentration of BaP and the duration of exposure. In high concentration of BaP, the mean tail lengths of nuclei was longer than it In low concentration, while the mean size of head DNA decreased. In this research, both in vitro and in vivo genotoxicity of PAHs could be biomonitored by the comet assay. Especially, clams and flounders seem to be useful as materials for monitoring genotoxic damage by comet assay.

  • PDF

Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage (UV에 의해 손상된 DNA 회복에 미치는 cobaltous chloride의 효과)

  • Kim, Kug-Chan;Kim, Yung-Jin;Lee, Kang-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.71-78
    • /
    • 1995
  • To develop methods to reduce radiation risk and apply such knowledge to improvement of radiation protection, the effects of cobaltous chloride known as bioantimutagen on the function of E. coli RecA protein involved in the repair of DNA damage were examined. The results demonstrated two distinct effects of cobaltous chloride on the RecA protein function necessary for the strand exchange reaction. Cobaltous chloride enhanced the ability of RecA protein to displace SSB protein from single-stranded DNA and the duplex DNA-dependent ATPase activity. RecA protein was preferentially bound with UV-irradiated supercoiled DNA as compared with nonirradiated DNA The binding of RecA protein to UV-irradiated supercoiled DNA was enhanced in a dose-dependent manner. It is likely that studies on the factors affecting repair efficiency and the DNA repair proteins may provide information on the repair of ionizing radiation-induced DNA damage and the mechanism for DNA radioprotection.

  • PDF

Decrease of Genotoxicity by Red Ginseng Root Extract (II) -Decrease of MMS- induced Genotoxicity by Red Ginseng Root Extract in Cul tared NIH3T3 Cells (홍삼 추출물에 의한 유전독성 감소효과(II) -배양 NIH3T3 세포에서 MMS에 의한 유전독성의 감소에 미치는 홍삼추출물 처리효과)

  • 차재영;유병수
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.1
    • /
    • pp.87-99
    • /
    • 1998
  • We have studied the effects of red ginseng root extract on the derease of MMS-induced gemotoxicity in cultured NIH3T3 cells. The increase in survival and the recovery from DNA synthesis inhibition in MMS-treated cells as a function of normal medium incubation time was potentiated, at a rate higher than those in UV-irradiated cells, by the presence of the ginseng extract. The extract also increased the MMS-induced excision repair as determined by unscheduled DNA synthesis. The amount of MMS-induced DNA single strand breads that are accumulated by polymerase inhibitors was increased, but as a rate lower rate than in UV-induced strand break, by the presence of the extract. These results suggest that the red ginseng extract increase MMS-induced repair and could be used as a reagent for protectiong alkylating agent-induced genotoxicity and cytotoxicity.

  • PDF

Molecular Strands and Related Properties of Silver(Ⅰ) Triflate with 3,3'-Oxybispyridine vs 3,3'-Thiobispyridine

  • Kim, Yu-Ju;Lee, Young-A;Park, Ki-Min;Chae, Hee K.;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1106-1109
    • /
    • 2002
  • Studies on subtle spacer ligand effects of AgCF3SO3 with 3,3'-Py2X (X = O vs S) have been carried out. The reaction of AgCF3SO3 with 3,3'-Py2O and 3,3'-Py2S produces [Ag(CF3SO3)(3,3'-Py2O)] and [Ag(3,3'-Py2S)] (CF3SO3), respectively. Crystallographic characterization of [Ag(CF3SO3)(3,3'-Py2O)] (monoclinic P1, a =8.405(2) $\AA$, b = 10.714(2) $\AA$, c = 18.031(2) $\AA$, $\alpha=$ 77.36(2), $\beta=107.83(2)^{\circ}$, $\gamma=$ 66.92(2), V = 1438.0(5) $\AA3$ , Z =2,R = 0.0486) reveals that the skeletal structure is an anion-bridged double-strand. The double-strands are packed like a plywood. The framework of [Ag(3,3'-Py2S)](CF3SO3) (orthorhombic Pcab, a = 17.330(2) $\AA$, b = 8.640(1) $\AA$, c = 19.933(6) $\AA$, V = 2985(1) $\AA3$ , Z =8, R = 0.0437) is a sinusoidal single-strand. The formation of each coordination polymer appears to be primarily associated with the donating ability and the confor ma-tional energy barrier of the spacer ligands. Thermal analyses indicate that [Ag(CF3SO3)(3,3'-Py2O)] and [Ag(3,3'-Py2S)](CF3SO3) are stable up to 250 $^{\circ}C$ and 210 $^{\circ}C$, respectively. For the anion exchangeability, the nature of the spacer ligand is more significant factor than the distance of silver(Ⅰ)···triflate.