• Title/Summary/Keyword: Single stage converter

Search Result 282, Processing Time 0.016 seconds

A Microcomputer-Based Data Acquisition System (Microcomputer를 이용(利用)한 Data Acquisition System에 관(關)한 연구(硏究))

  • Kim, Ki Dae;Kim, Soung Rai
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.18-29
    • /
    • 1983
  • A low cost and versatile data acquisition system for the field and laboratory use was developed by using a single board microcomputer. Data acquisition system based on a Z80 microprocessor was built, tested and modified to obtain the present functional system. The microcomputer developed consists of 6 kB ROM, 5 kB RAM, 6-seven segment LED display, 16-Hex. key and 8 command key board. And it interfaces with an 8 channel, 12 bits A/D converter, a microprinter, EPROM programmer for 2716, and RS232C interface to transfer data between the system and HP3000 mini-computer manufactured by Hewlett Packard Co., A software package was also developed, tested, and modified for the system. This package included drivers for the AID converter, LED display, key board, microprinter, EPROM programmer, and RS232c interface. All of these programs were written in 280 assembler language and converted to machine codes using a cross assembler by HP3000 computer to the system during modifying stage by data transferring unit of this system, then the machine language wrote to the EPROM by this EPROM programmer. The results are summarized as follows: 1. Measuring program developed was able to control the measuring intervals, No. of channels used, and No. of data, where the maximum measuring speed was 58.8 microsec. 2. Calibration of the system was performed with triangle wave generated by a function generator. The results of calibration agreed well to the test results. 3. The measured data was able to be written into EPROM, then the EPROM data was compared with original data. It took only 75 sec. for the developed program to write the data of 2 kB the EPROM. 4. For the slow speed measurements, microprinter instead of EPROM programmer proved to be useful. It took about 15 min. for microprinter to write the data of 2 kB. 5. Modified data transferring unit was very effective in communicating between the system and HP3000 computer. The required time for data transferring was only 1~2 min. 6. By using DC/DC converting devices such as 78-series, 79-series. and TL497 IC, this system was modified to convert the only one input power sources to the various powers. The available power sources of the system was DC 7~25 V and 1.8 A.

  • PDF

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF