• Title/Summary/Keyword: Single shear

Search Result 860, Processing Time 0.024 seconds

Shear Strength Evaluation on Multiple High-Shear Ring Anchors Using Shear Strength Model of a Single High-Shear Ring Anchor (단일 고전단 링앵커의 전단강도 모델을 이용한 다수 고전단 링앵커의 전단강도 평가)

  • Kim, Mun-Gil;Chun, Sung-Chul;Kim, Young-Ho;Sim, Hye-Jung;Bae, Min-Seo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.463-471
    • /
    • 2016
  • A shear strength model for the high-shear ring anchor consisting of a steel ring and a rod was developed based on the shear tests on single high-shear ring anchors. The shear strength was found to be proportional to $f_{ck}{^{0.75}}$ which is a similar characteristic to the strength of shear connectors used in composite structures. The effects of the compressive strength of concrete, edge distance, and embedment length of rod are included in the proposed model. Comparison with 22 tests shows that the average and the coefficient of variation of test-to-prediction ratios are 1.01 and 7.57%, respectively. Push tests on the specimens having four high-shear ring anchors at each face were conducted and the measured shear strengths were compared with the predictions by the proposed model. For the specimen with an edge distance of 100 mm, a splitting failure occurred and for the specimens with an edge distance of 150 mm, a failure mode mixed with splitting and bearing occurred, which were very similar to the failures of shear tests on single high-shear ring anchors. In case of a splitting failure, the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 400 mm which is four times of the edge distance. In case of a bearing failure, the failure area is less than 150 mm from the center of the anchor and therefore the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 200 mm. The average of the test-to-prediction ratios of Push tests is 98%, which means that the proposed mode can be applied to predict the shear strength of the multiple high-shear rings.

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles (사용 중인 단독 및 군말뚝의 측면에서 실시된 터널굴착으로 인한 말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.337-356
    • /
    • 2012
  • Three-dimensional (3D) numerical analyses have been performed to study the behaviour of single piles and grouped piles to adjacent tunnelling in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the piles and shear transfer mechanism have been analysed allowing soil slip at the pile-soil interface by using interface elements. The study includes the shear stresses at the soil next to the pile, the axial force distributions on the pile and the pile settlement. It has been found that existing elastic solutions may not accurately estimate the pile behaviour since several key issues are excluded. Due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops above the tunnel springline while upward shear stress is mobilised below the tunnel springline, resulting in a compressive force on the pile. In addition, mobilisation of shear strength at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. It has been found that grouped piles are less influenced by the tunnelling than the single pile in terms of the axial pile forces. The reduction of apparent allowable pile capacity due to pile settlement resulted from the tunnelling seemed to be insignificant.

Effect of SMA on the Interfacial Shear Strength for Single Glass Fiber and PC/SAN Blends (SMA가 PC/SAN 블렌드와 유리섬유간의 계면결합력에 미치는 영향)

  • Lee, Ui-Hwan;Nam, Gi-Jun;Lee, Jae-Uk
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.512-520
    • /
    • 2001
  • One of the most important factors which affect the mechanical properties of fiber-reinforced composite materials is the interfacial shear strength (IFSS). The IFSS of glass fiber and polycarbonate (PC)/styrene-co-acrylonitrile (SAN) blend system has been measured by the single fiber fragmentation test (SFFT). SAN contents were varied up to 30 wt% and the IFSS increased with the SAN contents. Styrene-co-maleic anhydride (SMA) was used as the compatibilizer and the glass fiber was surface treated with organosilane coupling agents. Addition of small amount of SMA in PC/SAN blend improved the IFSS by chemical bonding between maleic anhydride and silanol. The optimum MA content was 0.4 wt% of total matrix contents. Also, IFSS was greatly affected by the miscibility condition of SAN/SMA blends, which depended on the copolymer composition of SAN and SMA. It was found out that, higher IFSS could be obtained when the SAN/SMA blend was in miscible pairs. In case of SAN/SMA miscible pairs, the IFSS depended on the MA content in total matrix, not on the MA content in SMA.

  • PDF

On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads (횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구)

  • Min, Dug-Ki;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.

Experiments on Single-Disk Pumps for the Transportation of Micro-scale Water Life (미소 수중 생물체 이송용 단판 디스크 펌프의 성능 실험)

  • Zhang, Z.Q.;Chang, S.M.;Jeong, Y.H.;Yang, J.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2011
  • A boundary-layer pump with a single disk has been experimented to obtain its characteristic curve by changing the impeller of a centrifugal pump to a single disk. The primary objective to use of these types of pumps is to avoid hurting water life during transportation unnecessarily. The change of impeller should degrade the performance of pump, so we used the method to increase the roughness on the disk with sandpaper and mesh. The enhancement of shear force from the rotation of disk to the internal flow brought an augmentation of momentum transport, and the characteristics were far improved from the original single-disk pump without decreasing the survival rate of water life in the case of Pseudobagrus fulvidraco (bullhead fish). However, in the case of Artemia cyst (zooplankton), the survival rate was very degraded due to the micro scale smaller than turbulent eddy size. The result of this study could be used for the design of transportation and bio-filtering of water lying on a specific bandwidth of its scale of size.

COMPARATIVE STUDY ON THE SHEAR BOND STRENGTH OF ALL-IN-ONE DENTIN BONDING SYSTEM APPLIED TO PRIMARY TEETH (유치에 적용된 All-in-One 상아질 접착 시스템의 전단강도에 관한 비교연구)

  • Kim, Dong-Cheol;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.560-568
    • /
    • 2007
  • This study was performed to compare the shear bond strength of primary enamel & dentin treated by AQ Bond $Plus^{TM}$ and G $Bond^{TM}$, recently developed 6th generation dentin bonding system, to that of Single $Bond^{TM}$ being widely used. Also by observing the resin tag under scanning electron microscope, Resin tags of each material were also observed under scanning electron microscope and compared to one another. The possibility of clinical application of All-in-One system which has an advantage to reduce chair-time for children with difficult behavior pattern was evaluated. The results obtained are as follows: 1. No statistically significant difference between groups was found in shear bond strength of primary enamel. 2. In primary dentin, the shear bond strength of AQ Bond $Plus^{TM}$ was $1.15\;{\pm}\;0.37\;MPa$, G $Bond^{TM}$ was $1.69\;{\pm}\;0.74\;MPa$ and Single $Bond^{TM}$ was $0.56\;{\pm}\;0.11\;MPa$. There were no statistical difference between AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ and between G $Bond^{TM}$ and Single $Bond^{TM}$, whereas statistically significant difference was found between AQ Bond $Plus^{TM}$ and Single $Bond^{TM}$. 3. Under scanning electron microscope, resin tags observed in AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ were very weak and tangled while strong and thick tags were shown with many lateral branches in Single $Bond^{TM}$. The result of the present study coupled with the advantages of less working time over the previous generation suggests that All-in-One system might be effectively used in adhesive dental procedures for primary teeth.

  • PDF

A Study on the Improvement of Interfacial Bonding Shear Strength of Ti50-Ni50 Shape Memory Alloy Composite (Ti_{50}-Ni_{50} 형상기억합금 복합체의 계면 접학 전단강도 향상에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2461-2468
    • /
    • 2000
  • In this paper, single fiber pull-out test is used to measure the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite with temperature. Fiber and matrix of $Ti_{50}-Ni_{50}$ shape memory alloy composite are respectively $Ti_{50}-Ni_{50}$ shape memory alloy and epoxy resin. To strengthen the interfacial bonding shear stress, various surface treatments are used. They are the hand-sanded surface treatment, the acid etched surface treatment and the silane coupled surface treatment etc.. The interfacial bonding shear strength of surface treated shape memory alloy fiber is greater than that of surface untreated shape memory alloy fiber by from 10% to 16%. It is assured that the hand-sanded surface treatment and the acid etched surface treatment are the best way to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory composite. The best treatment condition of surface is 10% HNO$_3$ solution in the etching method to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite.

Investigation of the shear behaviour of multi-story reinforced concrete walls with eccentric openings

  • Taleb, Rafik;Bechtoula, Hakim;Sakashita, Masanubo;Bourahla, Noureddine;Kono, Susumu
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.361-377
    • /
    • 2012
  • Four Reinforced Concrete (RC) single span structural walls having various opening sizes and locations were constructed and tested under lateral reversed cyclic loading at the structural laboratory of Kyoto University. These specimens were scaled to 40% and represented the lower three stories of a six-storied RC building. The main purposes of the experimental tests were to evaluate the shear behavior and to identify the influence of opening ratios on the cracks distribution and shear strength of RC structural walls. The shear strength of the specimens was estimated by combining the shear strength of structural wall without openings and the reduction factor that takes into account the openings. Experimental and analytical results showed that the shear strength was different depending on the loading direction due to opening locations. A two-dimensional finite element analysis was carried out to simulate the performance of the tested specimens. The constructed finite elements model simulated the lateral load-drift angle relations quite well.