• Title/Summary/Keyword: Single reactor

Search Result 398, Processing Time 0.029 seconds

A Comparative Study on Enhanced Phytoremediation of Pb Contaminated Soil with Phosphate Solubilizing Microorganism(PSM) and EDTA in Column Reactor (칼럼 반응조에서 Phosphate Solubilizing Microorganism(PSM)과 EDTA에 의한 납 오염토양의 식물상 복원 증진에 관한 비교연구)

  • Nam, Yoon-Sun;Park, Young-Ji;Lee, In-Sook;Bae, Bum-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.500-506
    • /
    • 2008
  • Enhanced phytoremediation with EDTA or PSM(Phosphate solubilizing microorganism) was studied using green foxtail (Setaria viridis) in columns packed with 1,200 mgPb/kg contaminated soil to investigate the effects of EDTA or PSM on the plant uptake and vertical migration of Pb. EDTA, equimolar amount of total Pb in the column soil, was administered in two methods: the one was treated with 1/6 aliquots of the equimolar EDTA every week for 6 weeks and the other was treated with single dose of the equimolar EDTA before 14 days of harvest. The results showed that higher concentrations of Pb accumulated in the biomass of green fowtail after the chemical or biological treatment. The plant-root Pb concentration in PSM treatment(M), EDTA aliquot treatment(ES), and single dose treatment(E) was 2.6, 3.0, and 3.3 times higher, respectively, than that in the plant-root of control(164.7 mg/kg). The plant-stem Pb concentration in the M, ES and E treatment was 27, 37, and 40 times higher than that in the stem of control(8.1 mg/kg). The translocation factor, the ratio of shoot/root Pb concentration, was 0.6 in the two EDTA treatment, 0.5 in the M treatment, and 0.05 in the control, respectively. The largest amount of Pb was phyto-extracted in the E treatment whereas vertical migration of EDTA was significant in the ES treatment. This result showed that a single large dose of EDTA before harvest serves better for enhanced phytoremediation of Pb. Although, treatment with PSM showed less Pb phytoextraction by the plant but enhanced both the growth of plants in the column and microbial dehydrogenase activity in the soils. Therefore, enhanced phytoextraction of Pb with PSM treatment can be an alternative option for EDTA treatment, which is toxic to plants and soil ecosystem.

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Ion Adsorption Characteristics of IRN-150 Mixed Resin and Removal Behavior of $^{14}C$ Radionuclide from Spent Resin by Stripping Solutions (IRN-150 혼상수지의 이온 흡착특성 및 폐수지로부터 탈착용액을 이용한 $^{14}C$ 핵종의 제거 특성)

  • Yang, Ho-Yeon;Won, Jang-Sik;Choi, Young-Ku;Park, Geun-Il;Kim, In-Tae;Kim, Kwang-Wook;Song, Kee-Chan;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.373-384
    • /
    • 2006
  • Spent ion-exchanged resin generated from various purification systems in CANDU reactor was contaminated with high activity of $^{14}C$ radionuclide. This paper describes the results of fundamental study to develop the applicable technology for the treatment of this spent resin. Based on the adsorption capacity of inactive $HCO_3$ ion and other anions on IRN-150 mixed resin, the removal characteristics of $HCO_3$ ion adsorbed on to IRN-150 by various stripping solutions were evaluated. Maximum adsorption amount of the $HCO_3$ ion onto IRN-150 raw resin was about 11 mg-C/g-resin which agrees with the theoretical adsorption amount of this resin. Adsorption affinity of various anions such as $CS,\;CO,\;Na\;NH_4$ was analyzed in single and multi-component systems. From the results of removal characteristics of the $HCO_3$ ion adsorbed on IRN-150 by various stripping solutions, $NH_4H_2PO_4$ stripping solution is more effective than $NaNO_3,\;Na_3PO_3$ solutions for the complete removal of $^{14}C$ radionuclide from the IRN-150 spent resin.

  • PDF

N2O Decomposition Characteristics of Dual Bed Mixed Metal Oxide Catalytic System using Partial Oxidation of Methane (메탄의 부분산화를 이용한 이중 혼합금속산화물 촉매 반응시스템의 N2O 분해 특성 연구)

  • Lee, Nan Young;Woo, Je-Wan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • $N_2O$ decomposition characteristics of dual bed mixed metal oxide catalytic system was investigated. The partial oxidation of methane at first reactor of dual bed catalytic system was performed over Co-Rh-Al (1/0.2/1) catalyst under the optimized condition of $8,000h^{-1}$ GHSV, gas ratio ($CH_4:O_2=5:1$) at $500^{\circ}C$. In the dual bed system investigated herein, the second catalyst bed was employed for the $N_2O$ decomposition using product of partial oxidation of methane at first bed. An excellent $N_2O$ conversion activity even at lower temperature ($<250^{\circ}C$) was obtained with Co-Rh-Al (1/0.2/1) or Co-Rh-Zr-Al (1/0.2/0.3/1) catalyst by combining Co-Rh-Al (1/0.2/1) hydrotalcite catalyst for the partial oxidation of methane in a dual-bed system. The $N_2O$ conversion activity is drastically reduced in the presence of oxygen in second bed of a dual-bed system over Co-Rh-Al (1/0.2/1) catalyst at $300^{\circ}C$.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로)

  • Kim, Jin-Uk;Jung, Yu-Jin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.985-992
    • /
    • 2011
  • The 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics and flow distribution for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. Three types of modifications such as i) changing the plenum shape, ii) orifice install in the exit part of cleaned gas, iii) increasing the plenum number were established. From the results of computational fluid dynamics, it was revealed that the changing of plenum shape and orifice install in the exit part of cleaned gas was more reasonable than the increasing the plenum number because of the difficulties of retrofit. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, save the installation area, save the operation fee, and management more convenient.

Applications of a Hybrid System Coupled with Ultraviolet and Biofiltration for the Treatment of VOCs (휘발성유기화합물 처리를 위한 고도산화법과 고분자 담체 바이오필터 결합시스템의 적용)

  • Shin, Shoung Kyu;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.441-447
    • /
    • 2008
  • Volatile organic compounds (VOCs) emitted from various industrial sources commonly consist of biodegradable chemicals and recalcitrant compounds. Therefore, it is not effective to employ a single method to treat such mixtures. In this study, a novel hybrid system coupled with a ultraviolet (UV) photolysis reactor and a biofilter in a series was developed and evaluated using toluene and TCE as model VOCs. When only TCE was applied to the UV reactor, greater than 99% of TCE was degraded and the concentration of soluble byproducts from photo-oxidation reaction increased significantly. However, the toluene and TCE mixture was not effectively degraded by the UV photo-oxidation standalone process. The hybrid system showed high toluene removal efficiencies, and TCE degradation at a low toluene/TCE ratio was improved by UV pretreatment. These findings indicated that the UV photo-oxidation were effective for TCE degradation when the concentration of toluene in the mixture was relatively low. A restively high toluene content in the mixture resulted in an inhibition of TCE degradation. Thus, chemical interactions in both photo-oxidation and biodegradation need to be carefully considered to enhance overall performance of the hybrid system.

Camera Self-Calibration from Two Ellipse Contours in Pipes

  • Jeong, Kyung-Min;Seo, Yong-Chil;Choi, Young-Soo;Cho, Jai-Wan;Lee, Sung-Uk;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1516-1519
    • /
    • 2004
  • A tele-operated robot should be used to maintain and inspect nuclear power plants to reduce the radiation exposure to the human operators. During an overhaul of the nuclear power plants in Korea, a ROV(Remotely Operated Vehicle) may enter a cold-leg connected to the reactor to examine the state of the thermal sleeve and it's position in the safety injection nozzle. To measure the positions of the thermal sleeve or scratches from the video images captured during the examination, the camera parameters should be identified. However, the focal length of the CCD camera could be increased to a close up of the target and the aspect ratio and the center of the image could also be varied with capturing devices. So, it is desired to self-calibrated the intrinsic parameters of the camera and capturing device with the video images captured during the examination. In the video image of the safety injection nozzle, two or more circular grooves around the nozzle are shown as ellipse contours. In this paper, we propose a camera self-calibration method using a single image containing two circular grooves which are the greatest circles of the cylindrical nozzle whose radius and distance are known.

  • PDF

A Study on Ozonation of Sulfamethoxazole (Sulfamethoxazole의 오존산화처리에 관한 연구)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.459-469
    • /
    • 2019
  • The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.

A study on early faults detection of pressurizer pressure control system using MTS (MTS를 이용한 가압기 압력 제어 계통의 조기 고장 감지에 대한 연구)

  • Cha, Jae-Min;Kim, Joon-Young;Shin, Junguk;Yeom, Choongseob;Kang, Seong-Ki
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1385-1398
    • /
    • 2016
  • A pressurizer is a major equipment system in a nuclear power plant (NPP) and controls the reactor cooling system pressure within the allowable range. Faults in the pressurizer can be critical to the NPP; therefore, early fault detection in the pressurizer is significant for NPP safety. This study applies Mahalanobis Taguchi system (MTS), which is one of the promising pattern classification methods, based on the Mahalanobis distance concept and Taguchi quality engineering theory to the early fault detection problem of the pressurizer pressure control system. We conducted experiments using data from full scope NPP simulator based on a pressurizer pressure transmitter faults scenario to validate the faults detection performance of MTS. As a result, MTS can rapidly detect the faults compared to conventional faults detection based on single sensor monitoring.