• Title/Summary/Keyword: Single production forming machine

Search Result 4, Processing Time 0.017 seconds

Domestic Development of Vibrational Film Forming Machine and Die and Mold in the High Speed Production(I) - Single production forming machine - (고속 생산형 필름 진동판 성형기 및 금형 국산화 개발(I) - 단수 생산 진동판 성형기 -)

  • Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • Vibrational film has been more employed in ear-phones or small type of speakers along with a wide use of portable multi-media equipments such as MP3 and MP4. However, the current hand work production process of diaphragms is inefficient. In this study, a die-and-mold and a single production forming machine are developed, and they result in a multi-production forming machine. The multi-production forming machine consists primarily of a film feeding unit and an unwinding unit. A vacuum suction device provides the film feeding unit, while the unwinding unit is obtained using an appropriate damper. The advantage of the developed single production forming machine is shown according to a proper voice test.

Domestic Development of Vibrational Film Forming Machine and Die in the High Speed Production(II) - Multi-production forming machine - (고속 생산형 필름 진동판 성형기 및 금형 국산화 개발(II) - 다량 생산 진동판 성형기 -)

  • Kim, Jungl-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • This study consists of two parts. The first discusses the development of a single production forming machine which was reported in earlier papers. The second outlines the development of a multi-production forming machine, which consists primarily of a film feeding unit, an unwinding unit, and a heating block unit. The heating block unit of the multi-production forming machine has 30 members per die. An analysis of the stress deformation and temperature deviation of this machine is carried out using ANSYS Workbench and CFX-11 under the design conditions. According to this analysis, the maximum deflection in the Z-direction is $0.05104{\mu}m$ and the maximum temperature deviation is $0.7^{\circ}C$ when the temperature of the heating block unit is $175^{\circ}C$. It was also found that these values are structurally safe. The advantage of the developed multi-production forming machine is demonstrated to be in its offering of a proper voice test.

A study of Double Sheet Multi-forming Equipment (2겹 판재 멀티포밍 장치에 관한 연구)

  • Yun, Jae-Woong;Son, Ok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • Most motor cases adopt deep drawing products, which are excellent in waterproof functions, concentricity, right angle, and quality. In addition, the blower motor and seat motor, which are installed in the car interior and do not require waterproof function, adopts a multi-forming manufacturing method. The deep drawing process requires an expensive transfer press that can digest approximately 12 processes, such as drawing, trimming and piercing. On the other hand, products can be produced with low investment because the multi-forming method is composed of one multi-forming machine or one multi-forming machine and one press. The multi-forming machine is a high-priced facility that is mostly imported and a bending / shearing process multi-foaming machine, which was developed by domestic small and medium-sized enterprises, is not enough to reduce the production cost. An integral multi - forming machine is used as a limited working method for thin material and small products. A large product and thick material has a high shear load. A large product and thick material has a high shear load and uses a single crank press. After blanking, the worker manually feeds the material to a multi-forming machine. When the bending operation is performed in the multi-forming machine, it is transferred to the press again to calibrate the dimensions. This variance in work processes has resulted in lower cost competitiveness due to the lower productivity, quality issues, and excessive operator input. The aim of this study was to establish a stable and cost - effective production system through bending / shearing process separation and facility automation.

State recognition of fine blanking stamping dies through vibration signal machine learning (진동신호 기계학습을 통한 프레스 금형 상태 인지)

  • Seok-Kwan Hong;Eui-Chul Jeong;Sung-Hee Lee;Ok-Rae Kim;Jong-Deok Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2022
  • Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.