• Title/Summary/Keyword: Single particle

Search Result 908, Processing Time 0.03 seconds

Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity Market

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In order to facilitate the electricity market operation and trade in the restructured environment, ample transmission capability should be provided to satisfy the demand of increasing power transactions. The conflict of this requirement and the restrictions on the transmission expansion in the restructured electricity market has motivated the development of methodologies to enhance the available transfer capability (ATC) of existing transmission grids. The insertion of flexible AC transmission System (FACTS) devices in electrical systems seems to be a promising strategy to enhance single area ATC and multi-area ATC. In this paper, the viability and technical merits of boosting single area ATC and multi-area ATC using Thyristor controlled series compensator (TCSC), static VAR compensator (SVC) and unified power flow controller (UPFC) in single device and multi-type three similar and different device combinations are analyzed. Particle swarm optimization (PSO) algorithm is employed to obtain the optimal settings of FACTS devices. The installation cost is also calculated. The study has been carried out on IEEE 30 bus and IEEE 118 bus systems for the selected bilateral, multilateral and area wise transactions.

Preparation and Magnetic Properties of Acicular Ba-Ferrite Powder

  • Lee, Hak-Dong;Nam, Joong-Hee;Oh, Jae-Hee
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.40-43
    • /
    • 2000
  • Acicular $\alpha-FeOOH\; and\; Ba(OH)_2\cdot8H_2O$ are starting materials in this study. This paper presents the characteristics of the contents of citric acid and heating condition for preparing acicular barium ferrite powder. They control particle shape, crystalline phase, magnetic properties of acicular barium ferrite powder So the effects of the contents of citric acid and heating condition are studied. The experimental condition for starting materials were 800~1000$\circ C$ in firing and 0~40 wt% citric acid, respectively, Ba-ferrite particles fired at the range of 800 $\circ C$to 900 $\circ C$ were maintained as acicular particle shape, but there were mixed particles of acicular and round shape after fired at 950 $\circ C$. Ba-ferrite powder of the single phase was obtained in firing at 900~1000$\circ C$ and with 20 wt.% citric acid. There were unreacted phase of $\alpha-Fe_2O_3 \;and \; BaFe_2O_4$ phases as a second phase in case of sintering at below 850 $\circ C$. Acicular barium ferrite powder of single phase was also produced in firing at 900 $\circ C$ with 20 wt.% citric acid. The saturation magnetization of single phase of acicular $BaFe_12O_19$powder was about 51 emu/g and coercivity was about 4200 Oe.

  • PDF

An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet (석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구)

  • 채재우;조용철;전영남;한영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2159-2168
    • /
    • 1992
  • Coal-water slurry is considered to have the potential for displacing petroleum used in the existing oil-fired industrial and utility boilers. The combustion of coal-water slurry(CWS) is a complex process and little is known about the detailed mechanism. In this paper the combustion behavior of a single suspended droplet of CWS in hot gas stream was investigated. The effect of coal particle size, water content in droplet, initial droplet size, ambient temperature and oxygen fraction in ambient gas were studied. The results are as follows; (1) Increasing the oxygen fraction in ambient gas considerably reduced the char combustion time. (2) The variation of water content and coal particle size in droplet showed little effect on the combustion behavior. (3) In the relatively high temperature ambient gas, the water evaporation time became shorter and the combustion process was stable.

The Factors Influencing Glass Particles in Single Dose Glass Ampules upon Opening (유리앰플 개봉 시 미세 유리조각 유입에 영향을 미치는 요인)

  • Song, Ju-Yeon;Kim, Dong-Hee
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.14 no.2
    • /
    • pp.166-172
    • /
    • 2007
  • Purpose: The purpose of this study was to examine the factors influencing glass particle contamination in single dose glass ampules upon opening. Method: The study was single case experimental design. Different methods of opening ampule (hand, wooden stick), different sizes of ampules(1cc, 2cc) and different sizes of needles(17gauge, 23gauge, $5{\mu}m$ filter) were evaluated. Eighteen ampules were randomly assigned in each group. The number of glass ampule particles ${\ge}10{\mu}m$ was counted by microscope. Results: There was no significant difference in the number of particles aspirated by opening methods. But number of glass particles was much lower when using 1cc ampules rather than 2cc ampules and was also much lower when using smaller size needles and needles which include a $5{\mu}m$ filter rather than larger size of needles. Conclusion: We suggest that larger bore or unfiltered needles increase the risk of aspirating more glass particles than smaller bore or filter needles. In addition, these data show that a wooden stick can be used as a method opening glass ampules.

  • PDF

Visualizing test on the pass-through and collision characteristics of coarse particles in a double blade pump

  • Tan, Minggao;Lian, Yichao;Liu, Houlin;Wu, Xianfang;Ding, Rong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • As the key equipment in deep ocean mining, the slurry pump suffers from wear and blocking problems. In this paper, high-speed photography technique is applied to track the movement rule of single particle of the coarse particle solid-liquid two-phase flow in a double blade slurry pump. The influences of particle diameter and particle density on the pass-through and collision characteristics of particles are analyzed as well. The results show that the average of the passing pump time first decreases and then increases when the particle diameter increases. The average of the passing pump time decreases by 22.7%, when the particle density increases from $1.09g/cm^3$ to $1.75g/cm^3$. Besides, the particle density has great influence on the location where the particle hits the tongue. Most particles of $1.09g/cm^3$ hit the tongue on the left side, while collision location of particles of $1.75g/cm^3$ is mainly on the top and at the right side of the tongue. The research can provide a basis for the optimization design of slurry pump in deep ocean mining system.

Tensile Strength Variation of Binary Tablets Produced by Planetary Ball Milling (유성볼밀링으로 제조한 2성분 정제의 인장강도 변화)

  • Sim, Chol-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Planetary ball mill was used to decrease and control the particle size of excipients. The effects of the weight of sample and the revolution number of mill, and grinding time on the particle size of the ground sample were analyzed by response surface methodology. The optimum conditions for the milling of microcrystalline cellulose were 38.82 g of the weight of sample and 259 rpm of the revolution number of mill, and 45 minutes of grinding time. The predicted value of the particle size at the these conditions was $19.02{\mu}m$, of which the experimental value at the similar conditions was $18.68{\mu}m$. The tensile strength of tablets of single-component powders, such as microcrystalline cellulose, hydroxypropylmethyl cellulose and starch, binary mixtures and ground binary mixtures of these powder were measured at various relative densities. It was found that the logarithm of the tensile strength of the tablets was proportional to the relative density. A simple model, based upon Ryshkewitch-Duckworth equation that was originally proposed for porous materials, has been developed in order to predict the relationship between the tensile strength and relative density of ground binary tablets based on the properties of the constituent single-component powders. The validity of the model has been verified with experimental results for ground binary mixtures. It has demonstrated that this model can well predict the tensile strength of ground binary mixtures based upon the properties of single-component powders, such as true density, and the compositions. When the tensile strength of the mixture of microcrystalline cellulose hydroxypropylmethyl cellulose (90:10) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 45.3 to 5.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$. When the tensile strength of the mixture of microcrystalline cellulose starch (80:20) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 31.0 to 11.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$.

Toward High-Resolution Cryo-Electron Microscopy: Technical Review on Microcrystal-Electron Diffraction

  • Lee, Sangmin;Chung, Jeong Min;Jung, Hyun Suk
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.223-225
    • /
    • 2017
  • Cryo-electron microscopy (cryo-EM) is arguably the most powerful tool used in structural biology. It is an important analytical technique that is used for gaining insight into the functional and molecular mechanisms of biomolecules involved in several physiological processes. Cryo-EM can be separated into the following three groups according to the analytical purposes and the features of the biological samples: cryo-electron tomography (cryo-ET), cryo-single-particle reconstruction, and cryo-electron crystallography. Cryo-tomography is a unique EM technique that is used to study intact biomolecular complexes within their original environments; it can provide mechanistic insights that are challenging for other EM-methods. However, the resolution of reconstructed three-dimensional (3D) models generated by cryo-ET is relatively low, while single-particle reconstruction can reproduce biomolecular structures having near-atomic resolution without the need for crystallization unless the samples are large (>200 kDa) and highly symmetrical. Cryo-electron crystallography is subdivided into the following two categories according to the types of samples: one category that deals with two-dimensional (2D) crystalline arrays and the other category that uses 3D crystals. These two categories of electron-crystallographic techniques use different diffraction data obtained from still diffraction and continuous-rotation diffraction. In this paper, we review crystal-based cryo-EM techniques and focus on the recently developed 3D electron-crystallographic technique called microcrystal-electron diffraction.

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability

  • Yeou, Sanghun;Lee, Nam Ki
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.

Modeling of the Ignition and Combustion of Single Aluminum Particle (단일 알루미늄 연료 입자의 점화 및 연소 모델링)

  • Yang, Hee-Sung;Lim, Ji-Hwan;Kim, Kyung-Moo;Lee, Ji-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF