Estimating 3D information from a single image is one of the essential problems in numerous applications. Since a 2D image inherently might originate from an infinite number of different 3D scenes, thus 3D reconstruction from a single image is notoriously challenging. This challenge has been overcame by the advent of recent deep convolutional neural networks (CNNs), by modeling the mapping function between 2D image and 3D information. However, to train such deep CNNs, a massive training data is demanded, but such data is difficult to achieve or even impossible to build. Recent trends thus aim to present deep learning techniques that can be trained in a weakly-supervised manner, with a meta-data without relying on the ground-truth depth data. In this article, we introduce recent developments of weakly-supervised deep learning technique, especially categorized as scene 3D reconstruction and object 3D reconstruction, and discuss limitations and further directions.
In this paper, we proposed a method using sub-edge information extracted through a hierarchical structure in the process of generating super resolution based on a single image. In order to improve the quality of super resolution, it is necessary to clearly distinguish the shape of each area while clearly expressing the boundary area in the image. The proposed method assists edge information of the image in deep learning based super resolution method to create an improved super resolution result while maintaining the structural shape of the boundary region, which is an important factor determining the quality in the super resolution process. In addition to the group convolution structure for performing deep learning based super resolution, a separate hierarchical edge accumulation extraction process based on high-frequency band information for sub-edge extraction is proposed, and a method of using it as an auxiliary feature is proposed. Experimental results showed about 1% performance improvement in PSNR and SSIM compared to the existing super resolution.
In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.
In this paper, proposes a method using a multi block structure composed of residual blocks with adaptive weights to improve the quality of results in single image super resolution. In the process of generating super resolution images using deep learning, the most critical factor for enhancing quality is feature extraction and application. While extracting various features is essential for restoring fine details that have been lost due to low resolution, issues such as increased network depth and complexity pose challenges in practical implementation. Therefore, the feature extraction process was structured efficiently, and the application process was improved to enhance quality. To achieve this, a multi block structure was designed after the initial feature extraction, with nested residual blocks inside each block, where adaptive weights were applied. Additionally, for final high resolution reconstruction, a multi kernel image reconstruction process was employed, further improving the quality of the results. The performance of the proposed method was evaluated by calculating PSNR and SSIM values compared to the original image, and its superiority was demonstrated through comparisons with existing algorithms.
Proceedings of the Korea Contents Association Conference
/
2003.05a
/
pp.416-420
/
2003
In this paper, we implemented a dual-resolution image database system for the fast naked-eye retrieval using interpolation. This system can solve two conventional problems : a blocking noise at zoom-out image in single high resolution method and a big storage to store in simple dual-resolution image database system. The proposed method makes a subsampled image by subsampling a original image, and then a interpolated image of it using interpolation. After that, a hybrid dual-resolution image database is composed based on the differential image between the interpolated image and the original image. Experimental results of simulating through 60 sample images shows that the proposed method is 0.011 second faster than simple high-resolution method in the retrieval time - one is 0.003 second, the other is 0.014 second, respectively. Also, that improves 14.7% more than simple dual-resolution method in the stored size - one is 19,821 byte, the other is 16,910 byte, respectively.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.22
no.4
/
pp.359-365
/
2004
Data integration techniques are becoming increasing1y important for conquering a limitation with a single data. Image fusion which improves the spatial and spectral resolution from a set of images with difffrent spatial and spectral resolutions, and image registration which matches two images so that corresponding coordinate points in the two images correspond to the same physical region of the scene being imaged have been researched. In this paper, we compared with six image fusion methods(Brovey, IHS, PCA, HPF, CN, and MWD) with panchromatic and multispectral images of IKONOS and developed the registration method for applying to SPOT-5 satellite image and RADARSAT SAR satellite image. As the result of tests on image fusion and image registration, we could find that MWD and HPF methods showed the good result in term of visual comparison analysis and statistical analysis. And we could extract patches which depict detailed topographic information from SPOT-5 and RADARSAT and obtain encouraging results in image registration.
In case of using image sequence taken from a moving camera along a road in an urban area, general video mosaicing technique based on a single baseline cannot create 2-D image mosaics. To solve the drawback, this paper proposed a new image mosaicing technique through 3-D multi-baselines that can create image mosaics in 3-D space. The core of the proposed method is that each image frame has a dependent baseline, an equation of first order, calculated by using ground control point (GCP) of optical flows. The proposed algorithm consists of 4 steps: calculation of optical flows using hierarchical strategy, calculation of camera exterior orientation, determination of multi-baselines, and seamless image mosaics. This paper realized and showed the proposed algorithm that can create efficient image mosaics in 3-D space from real image sequence.
Recent deep learning-based face synthesis research shows the result of generating a realistic face including overall style or elements such as hair, glasses, and makeup. However, previous methods cannot create a face at a very detailed level, such as the microstructure of the skin. In this paper, to overcome this limitation, we propose a technique for synthesizing a more realistic facial image from a single face label image by controlling the types and intensity of skin microelements. The proposed technique uses Pix2PixHD, an Image-to-Image Translation method, to convert a label image showing the facial region and skin elements such as wrinkles, pores, and redness to create a facial image with added microelements. Experimental results show that it is possible to create various realistic face images reflecting fine skin elements corresponding to this by generating various label images with adjusted skin element regions.
In this paper, we propose the method for extracting Homogeneity Threshold($H_T$) and for segmenting homogeneous regions by USRG(Unseeded Region Growing) with $H_T$. The $H_T$ is a criterion to distinguish homogeneity in neighbor pixels and is computed automatically from the original image by proposed method. Theoretical background for proposed method is based on the Otsu's single level threshold method. The method is used to divide a small local part of original image int o two classes and the sum($\sigma_c$) of standard deviations for the classes to satisfy special conditions for distinguishing as different regions from each other is used to compute $H_T$. To find validity for proposed method, we compare the original image with the image that is regenerated with only the segmented homogeneous regions and show up the fact that the difference between two images is not exist visually and also present the steps to regenerate the image in order the size of segmented homogeneous regions and in order the intensity that includes pixels. Also, we show up the validity of proposed method with various results that is segmented using the homogeneity thresholds($H^*_T$) that is added a coefficient ${\alpha}$ for adjusting scope of $H_T$. We expect that the proposed method can be applied in various fields such as visualization and animation of natural image, anatomy and biology and so on.
This study aims to compare and evaluate the image differences between single and dual sources in applying a technique to reduce metal artifacts using dual energy CT. Discovery CT 256 (GE, USA) as a single source device and Somatom Definition Flash (Siemens Health Care, Forchheim, Germany) as a dual source device. The self-made phantom (pigs with medical titanium screws inserted) was quantitative and qualitatively evaluated under the same conditions by varying the dose under the same conditions using a dual energy CT. The evaluation method was compared by measuring SNR for metal artifacts (scattering, stripe) generated by metal inserts, divided around bones and around tissues. There was a difference in images in the method of reducing metal artifacts between single-source and dual-source devices. In a single source device, the linearized prosthesis by metal implantation showed a greater decrease than the image obtained from a double source device, and the surrounding tissue was well observed without interference from the artifact. In dual-source devices, scattering and stripe artifacts caused by metal inserts decreased more than on a single source device, and signals from adjacent tissues surrounding the metal implant were well observed without diminishing. If the examination is conducted separately between single source and dual source devices depending on whether the area to which the patient is intended to be viewed during the examination is adjacent to the metal insert or the total tissue surrounding the metal insert, it is believed that diagnostic helpful images can be obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.