• 제목/요약/키워드: Single image

Search Result 2,257, Processing Time 0.031 seconds

The Effects of Electron Beam Exposure Time on Transmission Electron Microscopy Imaging of Negatively Stained Biological Samples

  • Kim, Kyumin;Chung, Jeong Min;Lee, Sangmin;Jung, Hyun Suk
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.150-154
    • /
    • 2015
  • Negative staining electron microscopy facilitates the visualization of small bio-materials such as proteins; thus, many electron microscopists have used this conventional method to visualize the morphologies and structures of biological materials. To achieve sufficient contrast of the materials, a number of imaging parameters must be considered. Here, we examined the effects of one of the fundamental imaging parameters, electron beam exposure time, on electron densities generated using transmission electron microscopy. A single site of a negatively stained biological sample was illuminated with the electron beam for different times (1, 2, or 4 seconds) and sets of micrographs were collected. Computational image processing demonstrated that longer exposure times provide better electron densities at the molecular level. This report describes technical procedures for testing parameters that allow enhanced evaluations of the densities of electron microscopy images.

Enhanced Fuzzy Single Layer Perceptron

  • Chae, Gyoo-Yong;Eom, Sang-Hee;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2004
  • In this paper, a method of improving the learning speed and convergence rate is proposed to exploit the advantages of artificial neural networks and neuro-fuzzy systems. This method is applied to the XOR problem, n bit parity problem, which is used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for practical image application. As a result of experiment, it does not always guarantee convergence. However, the network showed considerable improvement in learning time and has a high convergence rate. The proposed network can be extended to any number of layers. When we consider only the case of the single layer, the networks had the capability of high speed during the learning process and rapid processing on huge images.

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

Contextual Modeling and Generation of Texture Observed in Single and Multi-channel Images

  • Jung, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.335-344
    • /
    • 2001
  • Texture is extensively studied in a variety of image processing applications such as image segmentation and classification because it is an important property to perceive regions and surfaces. This paper focused on the analysis and synthesis of textured single and multiband images using Markov Random Field model considering the existent spatial correlation. Especially, for multiband images, the cross-channel correlation existing between bands as well as the spatial correlation within band should be considered in the model. Although a local interaction is assumed between the specified neighboring pixels in MRF models, during the maximization process, short-term correlations among neighboring pixels develop into long-term correlations. This result in exhibiting phase transition. In this research, the role of temperature to obtain the most probable state during the sampling procedure in discrete Markov Random Fields and the stopping rule were also studied.

Depth Map Extraction from the Single Image Using Pix2Pix Model (Pix2Pix 모델을 활용한 단일 영상의 깊이맵 추출)

  • Gang, Su Myung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.547-557
    • /
    • 2019
  • To extract the depth map from a single image, a number of CNN-based deep learning methods have been performed in recent research. In this study, the GAN structure of Pix2Pix is maintained. this model allows to converge well, because it has the structure of the generator and the discriminator. But the convolution in this model takes a long time to compute. So we change the convolution form in the generator to a depthwise convolution to improve the speed while preserving the result. Thus, the seven down-sizing convolutional hidden layers in the generator U-Net are changed to depthwise convolution. This type of convolution decreases the number of parameters, and also speeds up computation time. The proposed model shows similar depth map prediction results as in the case of the existing structure, and the computation time in case of a inference is decreased by 64%.

Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network (RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법)

  • Nguyen, Huu Dung;Kim, Eung-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.5-8
    • /
    • 2019
  • 단일 영상 초해상도 (Single Image Super-Resolution - SISR)기법은 카메라로 획득된 저해상도 영상에 필터 기반의 연산을 적용하여 좋은 화질의 고해상도 영상을 복원하는 과정이다. 최근에 심층 합성곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여 주고 있다. 본 논문은 단일 영상 초해상도 성능을 개선하기 위해 웨이블릿 예측 네트워크를 효율적으로 적용하는 방법에 대해 연구하였으며, 저해상도 입력 영상의 특징을 잘 추출해내기 위해 네트워크 내부에 RDB를 적용하여 기존 방식보다 효율적으로 고해상도 영상 복원하는 기법을 제안한다. 모의실험을 통해 제안하는 방법이 기존 방법보다 화질은 약 PSNR 0.18dB만큼 우수하며 속도는 1.17배 빠른 것을 확인하였다.

  • PDF

Improved Residual Network for Single Image Super Resolution

  • Xu, Yinxiang;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.102-105
    • /
    • 2019
  • In the classical single-image super-resolution (SISR) reconstruction method using convolutional neural networks, the extracted features are not fully utilized, and the training time is too long. Aiming at the above problems, we proposed an improved SISR method based on a residual network. Our proposed method uses a feature fusion technology based on improved residual blocks. The advantage of this method is the ability to fully and effectively utilize the features extracted from the shallow layers. In addition, we can see that the feature fusion can adaptively preserve the information from current and previous residual blocks and stabilize the training for deeper network. And we use the global residual learning to make network training easier. The experimental results show that the proposed method gets better performance than classic reconstruction methods.

  • PDF

A fast single image dehazing method based on statistical analysis

  • Bui, Minh Trung;Bang, Seongbae;Kim, Wonha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.116-119
    • /
    • 2018
  • In this paper, we propose a new single-image dehazing method. The proposed method constructs color ellipsoids that are statistically fitted to haze pixel clusters in RGB space and then calculates the transmission values through color ellipsoid geometry. The transmission values generated by the proposed method maximize the contrast of dehazed pixels, while preventing over-saturated pixels. The values are also statistically robust because they are calculated from the averages of the haze pixel values. Furthermore, rather than apply a highly complex refinement process to reduce halo or unnatural artifacts, we embed a fuzzy segmentation process into the construction of the color ellipsoid so that the proposed method simultaneously executes the transmission calculation and the refinement process. The results of an experimental performance evaluation verify that compared to prevailing dehazing methods the proposed method performs effectively across a wide range of haze and noise levels without causing any visible artifacts. Moreover, the relatively low complexity of the proposed method will facilitate its real-time applications.

  • PDF

Video Palmprint Recognition System Based on Modified Double-line-single-point Assisted Placement

  • Wu, Tengfei;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Palmprint has become a popular biometric modality; however, palmprint recognition has not been conducted in video media. Video palmprint recognition (VPR) has some advantages that are absent in image palmprint recognition. In VPR, the registration and recognition can be automatically implemented without users' manual manipulation. A good-quality image can be selected from the video frames or generated from the fusion of multiple video frames. VPR in contactless mode overcomes several problems caused by contact mode; however, contactless mode, especially mobile mode, encounters with several revere challenges. Double-line-single-point (DLSP) assisted placement technique can overcome the challenges as well as effectively reduce the localization error and computation complexity. This paper modifies DLSP technique to reduce the invalid area in the frames. In addition, the valid frames, in which users place their hands correctly, are selected according to finger gap judgement, and then some key frames, which have good quality, are selected from the valid frames as the gallery samples that are matched with the query samples for authentication decision. The VPR algorithm is conducted on the system designed and developed on mobile device.