• Title/Summary/Keyword: Single high resolution satellite image

Search Result 38, Processing Time 0.034 seconds

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

Implementation of a SAR GeoCoding Module based on component

  • Kim, Kwang-Yong;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.337-339
    • /
    • 2003
  • This paper describes the SAR geocoding module, which is the sub-module of a IRHIS ('Integrated RS s/w for High resolution satellite ImageS'): package of 'Development of High Resolution Satellite Image Processing Technique' project in Electronics and Telecommunications Research Institute (ETRI). The function of this module is following. 1) Orbit Type : ERS1/ERS2, RADARSAT 2) Data Format : SAR CEOS Format(Single Look Complex) 3) Function: - Geocode : Generate a map projected SAR image based on only orbit information - Orthorectify: Generate a rigorous geocoded SAR image with a DEM information In this paper, we briefly describe the algorithm that is adopted to the functions, and component architecture.

  • PDF

Automated Edge-based Seamline Extraction for Mosaicking of High-resolution Satellite Images (고해상도 위성영상 모자이킹을 위한 경계선 기반의 접합선 자동 추출)

  • Jin, Kyeong-Hyeok;Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2009
  • By the advent of the high resolution satellite imagery, a ground-coverage included by a single satellite image is decreased. By the reason, there are increasing needs in image mosaicking technology to use images to various GIS fields. This paper describes an edge-based seamline extraction algorithm using edge information such as rivers, roads, buildings for image mosaicking. For this, we developed a method to track and link discontinuous edges extracted by edge detection operator. To estimate the effectiveness of the proposed algorithm, we applied the algorithm to IKONOS, KOMPSAT-1 and SPOT-5 satellite images. The experimental results showed that the algorithm successfully dealts with discontinuities caused by geometric differences in two images.

  • PDF

Evaluation on extraction of pixel-based solar zenith and offnadir angle for high spatial resolution satellite imagery (고해상도 위성영상의 화소기반 태양 천정각 및 촬영각 추출 및 평가)

  • Seong, Seon Kyeong;Seo, Doo Chun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.563-569
    • /
    • 2021
  • With the launch of Compact Advanced Satellite 500 series of various characteristics and the operation of KOMPSAT-3/3A, uses of high-resolution satellite images have been continuously increased. Especially, in order to provide satellite images in the form of ARD (Analysis Ready Data), various pre-processing such as geometric correction and radiometric correction have been developed. For pre-processing of high spatial satellite imagery, auxiliary information, such as solar zenith, solar azimuth and offnadir angle, should be required. However, most of the high-resolution satellite images provide the solar zenith and nadir angle for the entire image as a single variable. In this paper, the solar zenith and offnadir angle corresponding to each pixel of the image were calculated using RFM (Rational Function Model) and auxiliary information of the image, and the quality of extracted information were evaluated. In particular, for the utilization of pixel-based solar zenith and offnadir angle, pixel-based auxiliary data were applied in calculating the top of atmospheric reflectance, and comparative evaluation with a single constant-based top of atmospheric reflectance was performed. In the experiments using various satellite imagery, the pixel-based solar zenith and offnadir angle information showed a similar tendency to the auxiliary information of satellite sensor, and it was confirmed that the distortion was reduced in the calculated reflectance in the top of atmospheric reflectance.

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images (단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출)

  • Lee, Tae-Yoon;Lim, Young-Jae;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.3-13
    • /
    • 2006
  • Extraction of man-made objects from high resolution satellite images has been studied by many researchers. In order to reconstruct accurate 3D building structures most of previous approaches assumed 3D information obtained by stereo analysis. For this, they need the process of sensor modeling, etc. We argue that a single image itself contains many clues of 3D information. The algorithm we propose projects virtual shadow on the image. When the shadow matches against the actual shadow, the height of a building can be determined. If the height of a building is determined, the algorithm draws vertical lines of sides of the building onto the building in the image. Then the roof boundary moves along vertical lines and the footprint of the building is extracted. The algorithm proposed can use the shadow cast onto the ground surface and onto facades of another building. This study compared the building heights determined by the algorithm proposed and those calculated by stereo analysis. As the results of verification, root mean square errors of building heights were about 1.5m.

  • PDF

TDES CODER USING SSE2 TECHNOLOGY

  • Koo, In-Hoi;Kim, Tae-Hoon;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.114-117
    • /
    • 2007
  • DES is an improvement of the algorithm Lucifer developed by IBM in the 1977. IBM, the National Security Agency (NSA) and the National Bureau of Standards (NBS now National Institute of Standards and Technology NIST) developed the DES algorithm. The DES has been extensively studied since its publication and is the most widely used symmetric algorithm in the world. But nowadays, Triple DES (TDES) is more widely used than DES especially in the application in case high level of data security is required. Even though TDES can be implemented based on standard algorithm, very high speed TDES codec performance is required to process when encrypted high resolution satellite image data is down-linked at high speed. In this paper, Intel SSE2 (Streaming SIMD (Single-Instruction Multiple-Data) Extensions 2 of Intel) is applied to TDES Decryption algorithm and proved its effectiveness in the processing time reduction by comparing the time consumed for two cases; original TDES Decryption and TDES Decryption with SSE2

  • PDF

Acquisition of Geographic Information in North Korea Using High Resolution Satellite Image (고해상도 위성영상을 이용한 북한지역 지리정보 구축 실험연구)

  • SaGong, Hosang;Han, Sun-Hee;Park, Jin-Hyeong;Seo, Ki-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.46-56
    • /
    • 2004
  • As economic cooperation and exchanges between North and South Korea have been glowing much more than before, the demand for geographic information on North Korea is recently increasing. In fact, there is no specific method to be provided with geographic information on North Korea. In this regard, the study searched a method to collect geographic information on North Korea by using the high spatial resolution satellite image. In order to produce its best result, the study collected the geographic information on the case study area and ensured the location accuracy. This study produced total 52 items of geographic information on North Korea. Horizontal and vertical errors of stereo image, which are 4.6m and 0.9m respectively, showed high accuracy. In addition, even though the horizontal error of single image is 9m, which is bigger than that of stereo image, there is no doubt that it can be used as basic data for North Korean studies and related projects.

  • PDF

Generation of Time-Series Data for Multisource Satellite Imagery through Automated Satellite Image Collection (자동 위성영상 수집을 통한 다종 위성영상의 시계열 데이터 생성)

  • Yunji Nam;Sungwoo Jung;Taejung Kim;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1085-1095
    • /
    • 2023
  • Time-series data generated from satellite data are crucial resources for change detection and monitoring across various fields. Existing research in time-series data generation primarily relies on single-image analysis to maintain data uniformity, with ongoing efforts to enhance spatial and temporal resolutions by utilizing diverse image sources. Despite the emphasized significance of time-series data, there is a notable absence of automated data collection and preprocessing for research purposes. In this paper, to address this limitation, we propose a system that automates the collection of satellite information in user-specified areas to generate time-series data. This research aims to collect data from various satellite sources in a specific region and convert them into time-series data, developing an automatic satellite image collection system for this purpose. By utilizing this system, users can collect and extract data for their specific regions of interest, making the data immediately usable. Experimental results have shown the feasibility of automatically acquiring freely available Landsat and Sentinel images from the web and incorporating manually inputted high-resolution satellite images. Comparisons between automatically collected and edited images based on high-resolution satellite data demonstrated minimal discrepancies, with no significant errors in the generated output.

ATMOSPHERIC CORRECTION OF LANDSAT SEA SURFACE TEMPERATURE BY USING TERRA MODIS

  • Kim, Jun-Soo;Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.864-867
    • /
    • 2006
  • Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in $R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean.

  • PDF