• Title/Summary/Keyword: Single frame

Search Result 892, Processing Time 0.026 seconds

Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry (단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석)

  • Lee, Chang-Sik;Lee, Gi-Hyeong;Im, Gyeong-Su;Jeon, Mun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

Anomaly detection of isolating switch based on single shot multibox detector and improved frame differencing

  • Duan, Yuanfeng;Zhu, Qi;Zhang, Hongmei;Wei, Wei;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.811-825
    • /
    • 2021
  • High-voltage isolating switches play a paramount role in ensuring the safety of power supply systems. However, their exposure to outdoor environmental conditions may cause serious physical defects, which may result in great risk to power supply systems and society. Image processing-based methods have been used for anomaly detection. However, their accuracy is affected by numerous uncertainties due to manually extracted features, which makes the anomaly detection of isolating switches still challenging. In this paper, a vision-based anomaly detection method for isolating switches, which uses the rotational angle of the switch system for more accurate and direct anomaly detection with the help of deep learning (DL) and image processing methods (Single Shot Multibox Detector (SSD), improved frame differencing method, and Hough transform), is proposed. The SSD is a deep learning method for object classification and localization. In addition, an improved frame differencing method is introduced for better feature extraction and a hough transform method is adopted for rotational angle calculation. A number of experiments are conducted for anomaly detection of single and multiple switches using video frames. The results of the experiments demonstrate that the SSD outperforms the You-Only-Look-Once network. The effectiveness and robustness of the proposed method have been proven under various conditions, such as different illumination and camera locations using 96 videos from the experiments.

Relay Performance Analysis of TTR and STR Relay Modes in IEEE 802.16j MMR System

  • Seo, Si-O;Kim, Se-Jin;Kim, Seung-Yeon;Kim, Young-Il;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.230-240
    • /
    • 2010
  • The IEEE802.16j standard uses non-transparent relay stations to extend coverage. There are two types of non-transparent relay modes, that is, the time-division transmit and receive (TTR) relay mode which can operate with one of two types of frame structures, a single-frame and multiframe structure, and the simultaneous transmit and receive (STR) relay mode. In this paper, we analyze the relay performance of TTR and STR relay modes in IEEE 802.16j MMR system. We also propose a fair resource allocation scheme for the downlink relay frame. Numerical results show that relay performance of the TTR with a single-frame or a multiframe structure and that of the STR relay modes are almost the same in a two-hop system. However, in a three-hop system, the TTR mode with a single-frame structure outperforms other relay modes.

Free vibration and harmonic response of cracked frames using a single variable shear deformation theory

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.33-54
    • /
    • 2020
  • The aim of this study is to calculate natural frequencies and harmonic responses of cracked frames with general boundary conditions by using transfer matrix method (TMM). The TMM is a straightforward technique to obtain harmonic responses and natural frequencies of frame structures as the method is based on constructing a relationship between state vectors of two ends of structure by a chain multiplication procedure. A single variable shear deformation theory (SVSDT) is applied, as well as, Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT) for comparison purposes. Firstly, free vibration analysis of intact and cracked frames are performed for different crack ratios using TMM. The crack is modelled by means of a linear rotational spring that divides frame members into segments. The results are verified by experimental data and finite element method (FEM) solutions. The harmonic response curves that represent resonant and anti-resonant frequencies directly are plotted for various crack lengths. It is seen that the TMM can be used effectively for harmonic response analysis of cracked frames as well as natural frequencies calculation. The results imply that the SVSDT is an efficient alternative for investigation of cracked frame vibrations especially with thick frame members. Moreover, EBT results can easily be obtained by ignoring shear deformation related terms from governing equation of motion of SVSDT.

Dynamic stiffness formulations for harmonic response of infilled frames

  • Bozyigit, Baran;Yesilcea, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.183-191
    • /
    • 2018
  • In this paper, harmonic responses of infilled multi-storey frames are obtained by using a single variable shear deformation theory (SVSDT) and dynamic stiffness formulations. Two different planar frame models are used which are fully infilled and soft storey. The infill walls are modeled by using equivalent diagonal strut approach. Firstly, free vibration analyses of bare frame and infilled frames are performed. The calculated natural frequencies are tabulated with finite element solution results. Then, harmonic response curves (HRCs) of frame models are plotted for different infill wall thickness values. All of the results are presented comparatively with Timoshenko beam theory results to reveal the effectiveness of SVSDT which considers the parabolic shear stress distribution along the frame member cross-sections.

Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces

  • Maalek, Shahrokh;Heidary-Torkamani, Hamid;Pirooz, Moharram Dolatshahi;Naeeini, Seyed Taghi Omid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • In this research, the behavior of tube-in-tube BRBs (TiTBRBs) has been investigated. In a typical TiTBRB, the yielding core tube is located inside the outer restraining one to dissipate energy through extensive plastic deformation, while the outer restraining tube remains essentially elastic. With the aid of FE analyses, the monotonic and cyclic behavior of the proposed TiTBRBs have been studied as individual brace elements. Subsequently, a detailed finite element model of a representative single span-single story frame equipped with such a TiTBRB has been constructed and both monotonic and cyclic behavior of the proposed TiTBRBs have been explored under the application of the AISC loading protocol at the braced frame level. With the aid of backbone curves derived from the FE analyses, a simplified frame model has been developed and verified through comparison with the results of the detailed FE model. It has been shown that, the simplified model is capable of predicting closely the cyclic behavior of the TiTBRB frame and hence can be used for design purposes. Considering type of connection detail used in a frame, the TiTBRB member which behave satisfactorily at the brace element level under cyclic loading conditions, may suffer global buckling due to the flexural demand exerted from the frame to the brace member at its ends. The proposed TiTBRB suit tubular members of offshore structures and the application of such TiTBRB in a typical offshore platform has been introduced and studied in a single frame level using detailed FE model.

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

A CLASS OF STRUCTURED FRAMES IN FINITE DIMENSIONAL HILBERT SPACES

  • Thomas, Jineesh;Namboothiri, N.M. Madhavan;Nambudiri, T.C. Easwaran
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • We introduce a special class of structured frames having single generators in finite dimensional Hilbert spaces. We call them as pseudo B-Gabor like frames and present a characterisation of the frame operators associated with these frames. The concept of Gabor semi-frames is also introduced and some significant properties of the associated semi-frame operators are discussed.

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

Single-phase Active Power Filter Based on Rotating Reference Frame Method for Harmonics Compensation

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.94-100
    • /
    • 2008
  • This paper presents a new control method of single-phase active power filter (APF) for the compensation of harmonic current components in nonlinear loads. To facilitate the possibility of complex calculation for harmonic current detection of the single phase, a single-phase system that has two phases was constructed by including an imaginary second-phase giving time delay to the load current. The imaginary phase, which lagged the load current T/4 (Here T is the fundamental cycle) is used in the conventional method. But in this proposed method, the new signal as the second phase is delayed by the filter. Because this control method is applied to a single-phase system, an instantaneous calculation was developed by using the rotating reference frames synchronized to source-frequency rather than by applying instantaneous reactive power theory that uses the conventional fixed reference frames. The control scheme of single-phase APF for the current source with R-L loads is applied to a laboratory prototype to verify the proposed control method.