• Title/Summary/Keyword: Single column

Search Result 654, Processing Time 0.025 seconds

Dynamic Response of Arch Structure according to Natural Frequency Ratio between Arch and Columns (아치구조와 기둥간의 고유진동수비에 따른 아치구조물의 동적응답특성)

  • Seok, Keun-Young;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.65-72
    • /
    • 2013
  • Long span arch structure is composed of arch as relatively flexible structure and column as relatively rigid structure. In this study, the characteristic of dynamic response is analyzed according to the natural frequency ratio between arch and columns. The result of analysis for arch as relatively vertical vibration mode is dominant, the influence of columns mainly appears at relatively high frequency band according to increase of 1st mode frequency in column. However, the dynamic characteristic of arch structure is expected to vary with not only frequency ratio but interaction between vibration modes of arch and columns.

Wind-induced fatigue loading of tubular steel lighting columns

  • Robertson, A.P.;Hoxey, R.P.;Short, J.L.;Burgess, L.R.;Smith, B.W.;Ko, R.H.Y.
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 2001
  • Two 12 m high tubular steel lighting columns have been instrumented to determine the wind-induced fatigue loading experienced by such columns. Each column supported a single luminaire mounted on a 0.5 m long bracket. One column was planted in soil, and the other bolted through a welded baseplate to a substantial concrete base. The columns were strain gauged just above the shoulder weld which connected the main shaft to the larger base tube. Forced vibration tests were undertaken to determine the natural frequencies and damping of the columns. Extensive recordings were made of response to winds with speeds from 4 m/s to 17 m/s. Selected records were analysed to obtain stress cycle counts and fatigue lives. Mean drag coefficients were also derived from the strain data to investigate experimentally the effect of Reynolds Number.

Optimal damping ratio of TLCDs

  • Chen, Yung-Hsiang;Chao, Chen-Chi
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.227-240
    • /
    • 2000
  • The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio of the length of the horizontal section to the effective wetted length of a TLCD considered as another important parameter is also presented for investigation. A simple pendulum-like model test is conducted to simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control. Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD (tuned-mass damper) are included for discussion.

Performance Analysis of STTC Using Time Space Coding Method Appropriate for OFDM System (OFDM System에서 시공간 부호기법으로 STTC의 성능분석)

  • 김동옥
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.473-476
    • /
    • 2003
  • In this paper, presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia OFDM system. The presented method is a comparative analysis between a case where parameter a for time average is 0.3, 1 with consideration of channel presumption with two types of rms delayed proliferation, which is 50nsec, 150nsec, for the performance analysis of STTC(Space-Time Trellis Code) using time-space code method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of 1.0dB in 10$^{-3}$ when a was 0.3 than using only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

  • PDF

A new damage index for seismic fragility analysis of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.875-890
    • /
    • 2016
  • A new structural damage index for seismic fragility analysis of reinforced concrete columns is developed based on a local tensile damage variable of the Lee and Fenves plastic-damage model. The proposed damage index is formulated from the nonlinear regression of experimental column test data. In contrast to the response-based damage index, the proposed damage index is well-defined in the form of a single monotonically-increasing function of the volume weighted average of local damage distribution, and provides the necessary computability and objectivity. It is shown that the present damage index can be appropriately zoned to be used in seismic fragility analysis. An application example in the computational seismic fragility evaluation of reinforced concrete columns validates the effectiveness of the proposed damage index.

Dynamic Characteristic Identification on Steel Column bases Installed in Pendulum-type Earthquake Response Observatory

  • Choi, Jae-Hyouk;Ohi, Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2225-2235
    • /
    • 2004
  • An observatory termed 'Steel Swing' has been developed, where a 15000 kg pendulum is hanged from a stiff steel frame. A building element can be tested after inserted between the pendulum and the frame. Free vibration, forced vibration tests and earthquake monitoring were performed on an exposed-type steel column base. The response records monitored during natural earthquakes were used to identify the vibration property of the specimen. Identified system gain was approximated by a theoretical gain of linear SDOF system, and the response calculated based on such a linear system agrees with the monitored response fairly well. This research technique can be applied to check the behaviors of new materials and new details of connections and the safety of non-structural elements as well.

Determination of Mono- and Oligosaccharides Derivatized with p-Aminobenzoic Ethyl Ester by Reverse Phase HPLC

  • Kwon, Hyokjoon;Kim, Joon
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.859-864
    • /
    • 1995
  • Mono- and oligosaccharides are derivatized with p-aminobenzoic ethyl ester (ABEE), strongly absorbs UV light at 254 nm, in the presence of sodium cyanoborohydride. C18-bonded silica column is used for the separation of sugar-ABEE derivatives in an isocratic mode. RP-HPLC conditions are optimized by using ternary mixture as mobile phase and $45^{\circ}C$ as a column temperature. Sugar-ABEE derivatives are separated well within a short run time (ca. 25 min) by reverse-phase partition chromatographic mode. The ($1{\rightarrow}6$) linkage type of dihexose-ABEE derivatives has shorter retention time than ($1{\rightarrow}4$)-linkage type. After acid hydrolysis of glycoproteins with 2M trifluoroacetic acid, monosaccharide composition and contents are determined. This procedure is very useful for the simultaneous analysis of neutral and amino sugars in a single chromatographic step using RP-HPLC without reacetylation of deacetylated amino sugars, which are produced by acid hydrolysis.

  • PDF

Development of Foundation of Urban Overpass for Bimodal Tram System (바이모달 트램 운행을 위한 도심지 고가구조물 기초형식 개발)

  • Kang, Tae-Sik;Bae, Eul-Ho;Park, Young-Kon;Yoon, Hee-Taek
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.194-198
    • /
    • 2008
  • The necessities of development of foundation having minimized occupying area and construction time are required for overpass in the downtown area by which bimodal tram will pass a crossway. We are studying a single column drilled pier foundation which is continuous from pier to pile foundation. Due to the increased resisting moment by reinforced steel which is ranged from the upper part of pile to lower part of column above ground, it can be possible to make a smaller pile-section and lessen the bar reinforcing. And for the excavation work is possible with smaller equipment, this foundation has a improved constructability and economical efficiency. This foundation needs smaller amount of concrete and has a small self-weight. It has an effect on improving resistance against earthquake due to improved ductility in addition to improved rigidity by interaction between concrete and steel.

  • PDF

The anchorage-slip effect on direct displacement-based design of R/C bridge piers for limiting material strains

  • Mergos, P.E.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.493-513
    • /
    • 2013
  • Direct displacement-based design (DDBD) represents an innovative philosophy for seismic design of structures. When structural considerations are more critical, DDBD design should be carried on the basis of limiting material strains since structural damage is always strain related. In this case, the outcome of DDBD is strongly influenced by the displacement demand of the structural element for the target limit strains. Experimental studies have shown that anchorage slip may contribute significantly to the total displacement capacity of R/C column elements. However, in the previous studies, anchorage slip effect is either ignored or lumped into flexural deformations by applying the equivalent strain penetration length. In the light of the above, an attempt is made in this paper to include explicitly anchorage slip effect in DDBD of R/C column elements. For this purpose, a new computer program named RCCOLA-DBD is developed for the DDBD of single R/C elements for limiting material strains. By applying this program, more than 300 parametric designs are conducted to investigate the influence of anchorage slip effect as well as of numerous other parameters on the seismic design of R/C members according to this methodology.

Behaviour of flush end-plate beam-to-column joints under bending and axial force

  • da Silva, Luis Simoes;de Lima, Luciano R.O.;da S. Vellasco, Pedro C.G.;de Andrade, Sebastiao A.L.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.77-94
    • /
    • 2004
  • Steel beam-to-column joints are often subjected to a combination of bending and axial forces. The level of axial forces in the joint may be significant, typical of pitched-roof portal frames, sway frames or frames with incomplete floors. Current specifications for steel joints do not take into account the presence of axial forces (tension and/or compression) in the joints. A single empirical limitation of 10% of the beam's plastic axial capacity is the only enforced provision in Annex J of Eurocode 3. The objective of the present paper is to describe some experimental and numerical work carried out at the University of Coimbra to try to extend the philosophy of the component method to deal with the combined action bending moment and axial force.