This paper analyzes the performance of various single channel speech enhancement algorithms when they are applied to automatic speech recognition (ASR) systems as a preprocessor. The functional modules of speech enhancement systems are first divided into four major modules such as a gain estimator, a noise power spectrum estimator, a priori signal to noise ratio (SNR) estimator, and a speech absence probability (SAP) estimator. We investigate the relationship between speech recognition accuracy and the roles of each module. Simulation results show that the Wiener filter outperforms other gain functions such as minimum mean square error-short time spectral amplitude (MMSE-STSA) and minimum mean square error-log spectral amplitude (MMSE-LSA) estimators when a perfect noise estimator is applied. When the performance of the noise estimator degrades, however, MMSE methods including the decision directed module to estimate a priori SNR and the SAP estimation module helps to improve the performance of the enhancement algorithm for speech recognition systems.
This paper proposes a speech enhancement algorithm to improve the speech intelligibility by suppressing both reverberation and background noise. The algorithm adopts a non-causal single-channel minimum variance distortionless response (MVDR) filter to exploit an additional information that is included in the noisy-reverberant signals in subsequent frames. The noisy-reverberant signals are decomposed into the parts of the desired signal and the interference that is not correlated to the desired signal. Then, the filter equation is derived based on the MVDR criterion to minimize the residual interference without bringing speech distortion. The estimation of the correlation parameter, which plays an important role to determine the overall performance of the system, is mathematically derived based on the general statistical reverberation model. Furthermore, the practical implementation methods to estimate sub-parameters required to estimate the correlation parameter are developed. The efficiency of the proposed enhancement algorithm is verified by performance evaluation. From the results, the proposed algorithm achieves significant performance improvement in all studied conditions and shows the superiority especially for the severely noisy and strongly reverberant environment.
본 논문에서는 PTT(Push-To-Talk) 기반의 무선 통신을 위한 진폭 및 위상 복원 기반의 단일 채널 음성 향상 방식을 제안한다. 제안한 방식은 신호의 진폭만을 대상으로 음성 향상을 진행했던 기존의 방식들과 달리, 음성 신호의 진폭과 위상을 분리하여 각각 향상시켜 다시 결합함으로써 더욱 양질의 음성을 제공한다. 본 논문에서 제안하는 방식의 성능을 평가하기 위해 동적 잡음 환경에서의 단계별 비교 실험을 실시하였으며, 실험 결과를 통해 제안한 방식이 다양한 잡음 환경에서 양질의 음성을 제공하는 것을 확인할 수 있다.
This paper describes a single channel speech enhancement as the pre-processor of automatic speech recognition system. The improvements are based on using optimally modified log-spectra (OM-LSA) gain function with a non-causal a priori signal-to-noise ratio (SNR) estimation. Experimental results show that the proposed method gives better perceptual evaluation of speech quality score (PESQ) and lower log-spectral distance, and also better word accuracy. In the enhancement system, parameters was turned for automatic speech recognition.
This paper concerns an effective dual-channel noise reduction method to increase the performance of speech recognition in a car environment. While various single channel methods have already been developed and dual-channel methods have been studied somewhat, their effectiveness in real environments, such as in cars, has not yet been formally proven in terms of achieving acceptable performance level. Our aim is to remedy the low performance of the single and dual-channel noise reduction methods. This paper proposes an effective dual-channel noise reduction method based on a high-pass filter and front-end processing of the eigendecomposition method. We experimented with a real multi-channel car database and compared the results with respect to the microphones arrangements. From the analysis and results, we show that the enhanced eigendecomposition method combined with high-pass filter indeed significantly improve the speech recognition performance under a dual-channel environment.
In this paper, we focus on the real time implementation of the single channel adaptive noise canceller(ANC) by using TMS320C30 EVM board. The implemented single channel adaptive noise canceller is based on a reference paper [1] in which it is simulated by using the recursive average magnitude difference function(AMDF) to get a properly delayed input speech on a sample basis as a reference signal and normalized least mean square(NLMS) algorithm. To certify results of the real time implementation, we measured the processing time of the ANC and enhancement ratio according to various signalto-noise ratios(SNRs). Experimental results demonstrate that the processing time of the speech signal of 32ms length with delay estimation of every 10 samples is about 26.3 ms, and almost the same performance as given in [1] is obtained with the implemented system.
We propose a novel phase-based method for single-channel speech enhancement to extract and enhance the desired signals in noisy environments by utilizing the phase information. In the method, a phase-dependent a priori signal-to-noise ratio (SNR) is estimated in the log-mel spectral domain to utilize both the magnitude and phase information of input speech signals. The phase-dependent estimator is incorporated into the conventional magnitude-based decision-directed approach that recursively computes the a priori SNR from noisy speech. Additionally, we reduce the performance degradation owing to the one-frame delay of the estimated phase-dependent a priori SNR by using a minimum mean square error (MMSE)-based and maximum a posteriori (MAP)-based estimator. In our speech enhancement experiments, the proposed phase-dependent a priori SNR estimator is shown to improve the output SNR by 2.6 dB for both the MMSE-based and MAP-based estimator cases as compared to a conventional magnitude-based estimator.
잡음이 존재하는 실제 환경에서 음성인식을 실시하는 경우에 음성인식의 성능 열화 및 음성의 품질이 저화되지 않는 강건한 음성인식 기술이 필요하다. 이러한 음성인식 기술을 개발함으로써 사람의 음성 스펙트럼과 유사한 잡음 환경에서도 안정되고 높은 음성인식률이 실현되는 어플리케이션이 요구된다. 따라서 본 논문에서는 최소 평균 제곱의 오차를 기반으로 한 단시간 스펙트럼 진폭 방법인 MMSA-STSA 추정 알고리즘에 기초한 잡음억압을 처리하는 음성강조 알고리즘을 제안한다. 이 알고리즘은 단일 채널 입력에 기초한 효과적인 비선형 음성강조 알고리즘이며, 높은 잡음억제 성능을 가지고 있으며 음성의 통계적인 모델에 기초하여 음성의 왜곡량을 줄이는 기법이다. 본 실험에서는 MMSA-STSA 추정 알고리즘의 유효성을 확인하기 위하여 입력 음성파형과 출력 음성파형을 비교하여 제안한 알고리즘의 효과를 확인한다.
본 논문에서는 잡음 환경에서 다채널 위너 필터의 성능을 향상시키기 위한 방법을 제안한다. 부공간(subspace) 기반의 다채널 위너 필터를 설계하는 경우, 목적 신호가 단일 음원인 경우는 음성 상관 행렬의 주성분 부공간에서 음성 성분을 추정할 수 있다. 이 때, 음성 상관 행렬은 음성과 간섭 잡음의 교차 상관도가 음성 상관 행렬에 비해 무시할만한 수준이라는 가정하에 신호 상관 행렬에서 간섭 잡음의 상관 행렬을 차감하여 추정하게 된다. 그러나 간섭 잡음 수준이 높아지게 되면 이러한 가정이 더 이상 유효하지 않게 되며 이에 따라 주성분 부공간 추정 오차도 증가하게 된다. 본 연구에서는 음성 존재 확률과 목적 신호의 방향 벡터를 이용하여 주성분 부공간을 보정하는 방법을 제안한다. 주성분 부공간에서 다채널 음성 존재 확률을 유도하고 주성분 부공간 벡터를 보정하는데 적용하였다. 실험을 통해 제안하는 방법이 잡음 환경에서 다채널 위너 필터의 성능을 향상시키는 것을 확인할 수 있다.
Although deep neural network-based acoustic models have greatly improved the performance of automatic speech recognition (ASR), reverberation still degrades the performance of distant speech recognition in indoor environments. In this paper, we adopt the DenseNet, which has shown great performance results in image classification tasks, to improve the performance of reverberant speech recognition. The DenseNet enables the deep convolutional neural network (CNN) to be effectively trained by concatenating feature maps in each convolutional layer. In addition, we extend the concept of multi-resolution CNN to multi-resolution DenseNet for robust speech recognition in reverberant environments. We evaluate the performance of reverberant speech recognition on the single-channel ASR task in reverberant voice enhancement and recognition benchmark (REVERB) challenge 2014. According to the experimental results, the DenseNet-based acoustic models show better performance than do the conventional CNN-based ones, and the multi-resolution DenseNet provides additional performance improvement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.