• Title/Summary/Keyword: Single cell injection

Search Result 132, Processing Time 0.027 seconds

Integration and Expression of Goat ${\beta}-Casein/hGH$ Hybrid Gene in a Transgenic Goat

  • Lee, Chul-Sang;Lee, Doo-Soo;Fang, Nan-Zhu;Oh, Keon-Bong;Shin, Sang-Tae;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.293-299
    • /
    • 2006
  • In order to generate transgenic goats expressing human growth hormone (hGH) in their mammary glands, goat ${\beta}-Casein/hGH$ hybrid gene was introduced into goat zygotes by pronuclear microinjection. DNA-injected embryos were transferred to the oviduct of recipients at 2-cell stage or to the uterus at morula/blastocyst stage after cultivation in glutathione-supplemented mSOF medium in vitro. Pregnancy and survival rate were not significantly different between 2-cell embryos and morula/blastocysts transferred to oviduct and uterus, respectively. One transgenic female goat was generated from 153 embryos survived from DNA injection. Southern blot analysis revealed that the transgenic goat harbored single-copy transgene with a partial deletion in its sequences. Despite of the partial sequence deletion, the transgene was successfully expressed hGH at the level of $72.1{\pm}15.1{\mu}g/ml$ in milk throughout lactation period, suggesting that the sequence deletion had occurred in non-essential part of the transgene for the transgene expression. Unfortunately, however, the transgene was not transmitted to her offspring during three successive breeding seasons. These results demonstrated that goat ${\beta}-casein/hGH$ gene was integrated into the transgenic goat genome in a mosaic fashion with a partial sequence deletion, which could result in a low level expression of hGH and a failure of transgene transmission.

Short-Term High Expression of Interferon-Alpha Modulates Progression of Type 1 Diabetes in NOD Mice

  • Park, Mi-Kyoung;Seo, Su-Yeong;Hong, Sook-Hee;Kim, Hye-Jin;Park, Eun-Jin;Kim, Duk-Kyu;Lee, Hye-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Type I diabetes (T1D) is an organ-specific autoimmune disease caused by the T cell-mediated destruction of the insulin-producing ${\beta}$ cells in the pancreatic islets. The onset of T1D is the consequence of a progressive destruction of islet ${\beta}$ cells mediated by an imbalance between effector $CD4^+$ T helper (Th)1 and regulatory $CD4^+$ Th2 cell function. Since interferon-alpha (IFN-${\alpha}$) has been known to modulate immune function and autoimmunity, we investigated whether administration of adenoviralmediated IFN-${\alpha}$ gene would inhibit the diabetic process in NOD mice. The development of diabetes was significantly inhibited by a single injection of adenoviral-mediated IFN-${\alpha}$ gene before 8 weeks of age. Next, we examined the hypothesis that Th2-type cytokines are associated with host protection against autoimmune diabetes, whereas Th1-type cytokines are associated with pathogenesis of T1D. The expression of IFN-${\alpha}$ induced increase of serum IL-4 and IL-6 (Th2 cytokines) levels and decrease of serum IL-12 and IFN-${\gamma}$ (Th1 cytokines) levels. Therefore, overexpression of IFN-${\alpha}$ by adenoviralmediated delivery provides modulation of pathogenic progression and protection of NOD mice from T1D.

Hepatoprotective Activity of Crataegii Fructus Water Extract against Cadmium-induced Toxicity in Rats (카드뮴유발 흰쥐의 간손상에 대한 산사(山査)추출물의 보호효과)

  • Shin, Jeong-Hun;Jo, Mi-Jeong;Park, Sang-Mi;Park, Sook-Jahr;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.249-257
    • /
    • 2010
  • Crataegii Fructus is commonly used as a improving digestion, removing retention of food, promoting blood circulation and resolving blood stasis agent in East Asia. Cadmium (Cd) is widely distributed in the environment due to its use in industry. An exposure to Cd causes dysuria, polyuria, chest pain, hepatic and renal tubular diseases. The liver is the most important target organ when considering Cd-induced toxicity because Cd primarily accumulates in the liver. This study investigated the protective effect of Crataegii Fructus water extract against cadmium ($CdCl_2$, Cd)-induced liver toxicity in H4IIE cells, a rat hepatocyte-derived cell line and in rats. Cell viability was significantly reduced in Cd-treated H4IIE cells in a time and concentration-dependent manner. However, Crataegii Fructus water extract (CFE) protected the cells from Cd-induced cytotoxicity via inhibition of PARP cleavage. To induce acute toxicity in rats, Cd (4 mg/kg body weight) was dissolved in normal saline and intravenously injected into rats. The rats then received either a vehicle or silymarin (as a positive control) or CFE (50, 100 mg/kg/day) for 3 days, and were subsequently exposed to a single injection of Cd. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were significantly increased by Cd treatment. In contrast, pretreatment with CFE reduced ALT, AST and LDH. In histopathological analysis, CFE reduced the hepatic degenerative regions and the number of degenerative hepatocytes. These are considered as direct evidences that Crataegii Fructus has favorable inhibitory effects on the Cd-intoxicated liver damages. The efficacy of Crataegii Fructus shows slight lower than that of silymarin in the present study.

The Effects of Cortex Mori on NO, $TNF-{\alpha}$ and $IL-1{\alpha}$ production by macrophage (상백피(桑白皮)가 대식세포의 NO, $TNF-{\alpha}$$IL-1{\alpha}$ 생산에 미치는 영향)

  • Ahn, Jae-Kyu;Ahn, Duk-Kyun;Cho, Jae-Chon
    • The Journal of Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.485-501
    • /
    • 1998
  • Cortex Mori (Moros alba L.), the root bark of mulberry tree has been used as an autiphlogistic, diuretic and expectorant in herval medicine. Recently, a few papers reported that phenolic extract of Cortex Mori had the hypotensive, hypoglycemic, antiviral and anticancer effects, and hot water extract of Cortex Mori(CM) had inhibitory effect on the degranulation and histamine release from activated mast cells. These previous studies suggest a possibility that CM has an antidotal activity against inflammation which was mediated mainly by macrophage-secreting inflammatory factors. This study was performed to evaluate the influences of CM on carrageenan-induced edema in vivo and release of inflammatory mediators such as NO, TNF and IL-1 by macrophages stimulated with LPS or $IFN-{\gamma}$ in vitro. Subcutaneous injections of carrageenan into the mouse paw rapidly induced local edema by increasing vascular permeability, but single intraperitoneal injection of CM extract at 30 minutes before carrageenan suppressed the development of edema. NO and TNF production from macrophage stimulated by LPS or $IFN-{\gamma}$ were significantly suppressed, especially TNF secretion by up to 3-4 folds. LPS stimulated IL-1 production was also inhibited, but not significantly. Cell viability assay verified that the inhibition was not due to general cell toxicity. These results suggest that reduction of NO, TNF and IL-1 production may be one of the means by which CM prevent inflammation associated diseases.

  • PDF

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo

  • Baek, Seung-Hoon;Shin, Byong-kyu;Kim, Nam Jae;Chang, Sun-Young;Park, Jeong Hill
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • Background: Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of cisplatin-induced acute renal failure. Methods: An enriched mixture of ginsenosides Rk3 and Rh4 (KG-KH; 49.3% and 43.1%, respectively) was purified from sun ginseng (heat processed Panax ginseng). Cytotoxicity was induced by treatment of $20{\mu}M$ cisplatin to LLC-PK1 cells and rat model of acute renal failure was generated by single intraperitoneal injection of 5 mg/kg cisplatin. Protective effects were assessed by determining cell viability, reactive oxygen species generation, blood urea nitrogen, serum creatinine, antioxidant enzyme activity, and histopathological examination. Results: The in vitro assay demonstrated that KG-KH ($50{\mu}g/mL$) significantly increased cell viability (4.6-fold), superoxide dismutase activity (2.8-fold), and glutathione reductase activity (1.5-fold), but reduced reactive oxygen species generation (56%) compared to cisplatin control cells. KG-KH (6 mg/kg, per os) also significantly inhibited renal edema (87% kidney index) and dysfunction (71.4% blood urea nitrogen, 67.4% creatinine) compared to cisplatin control rats. Of note, KG-KH significantly recovered the kidney levels of catalase (1.2-fold) and superoxide dismutase (1.5-fold). Conclusion: Considering the oxidative injury as an early trigger of cisplatin nephrotoxicity, our findings suggest that ginsenosides Rk3 and Rh4 protect the kidney from cisplatin-induced oxidative injury and help to recover renal function by restoring intrinsic antioxidant defenses.

Autophagy localization and cytoprotective role in cisplatin-induced acute kidney injury

  • Karunasagara, Shanika;Hong, Geum-Lan;Jung, Da-Young;Ryu, Si-Yun;Jung, Ju-Young
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.3
    • /
    • pp.133-139
    • /
    • 2019
  • Autophagy is a fundamental cellular process that maintains homeostasis and cell integrity, under stress conditions. Although the involvement of autophagy in various conditions has been elucidated, the role of autophagy in renal structure is not completely clarified. Our aim was to investigate the cytoprotective effect of autophagy against acute kidney injury (AKI) through cisplatin deteriorative pathway, which leads to AKI via renal cell degradation. For in vivo experiments, male Sprague Dawley rats were divided in to 2 groups (n = 6/group) as control, Cis-5D. Following a single intraperitoneal injection of cisplatin, rats were sacrificed after 5 days. Blood urea nitrogen (BUN), creatinine (Cr) and histological alterations were examined. Further, expression of key regulators of autophagy, light-clain 3 (LC3), p62, and Beclin1, was evaluated by immunohistochemistry (IHC). The rats exhibited severe renal dysfunction, indicated by elevated BUN, Cr. Hematoxylin and eosin staining revealed histological damages in cisplatin-treated rats. Furthermore, IHC analysis revealed increased expression of LC3, Beclin1 and decreased expression of p62. Furthermore, expression of aforementioned autophagy markers was restricted to proximal tubule. Taken together, our study demonstrated that cisplatin can cause nephrotoxicity and lead to AKI. This phenomenon accelerated autophagy in renal proximal tubules and guards against AKI.

Effect of Si-Wu-Tang and Si-Jun-Zi-Tang on the Survival of Jejunal Crypt Cells and Hematopoietic Cells in Irradiated Mice (방사선조사 마우스에서 소장움세포 및 조혈세포 생존에 미치는 사물탕 및 사군자탕의 영향)

  • Kim, Sung-Ho;Oh, Heon;Lee, Song-Eun;Jo, Sung-Kee;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.888-894
    • /
    • 1998
  • In order to investigate the radioprotective effect of Si-Wu-Tang (Korean name: Sa-Mul-Tang), a kind of traditional Oriental medicine as a blood-building decoction (Oriental medical concept: Bu-Xie), and Si-Jun-Zi-Tang (Korean name: Sa-Gun-Ja-Tang), one of the widely used Oriental herbal medicines as an energy tonic (Chinese medical concept: Bu-Qi). the jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells were observed in irradiated mice. Jejunal crypts were protected by Si-Wu-Tang pretreated both per os (2 mg/mL of drinking water for 7 days, p<0.05) and intraperitoneally (1 mg/head, single injection at 24 hours before irradiation). Si-Wu-Tang adminstration before irradiation(1 mg/head, single injection at 24 hours before irradiation) resulted in an increase of the formation of endogenous spleen colony (p<0.005). The frequency of radiation-induced apoptosis in intestinal crypt cells was also reduced by pretreatment of Si-Wu-Tang (p<0.01). However, the radioprotective effect of Si-Jun-Zi-Tang was not as significant as that of Si-Wu-Tang. These results suggest that Si-Wu-Tang may be a useful radioprotective food, especially since it is a relatively nontoxic natural product.

  • PDF

Production of Second Generational Cloning Embryos with Activated Oocytes in Rabbits (토끼에서 수핵란의 세포질 활성화에 의한 제 2세대 복제수정란의 생산)

  • 이효정;윤희준;최창용;공일근;박충생;최상용
    • Journal of Embryo Transfer
    • /
    • v.12 no.2
    • /
    • pp.133-139
    • /
    • 1997
  • Large scale production of cloned embryos requires the technology of multiple generational nuclear transfer(NT) by using NT embryos itself as the subsequent donor nuclei. In this work we investigated comparatively the effects of enucleated oocytes treated with ionomycin and 6-DMAP on the electrofusion rate and in vitro developmental potential in the first and second NT embryos. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FCS) at 47 hours after hCG injection. The recipient cytoplasms were obtained by removing the nucleus and the first polar body from the oocytes collected at 15 hours after hCG injection. The enucleated oocytes were pre-activated by 5 min incubation in 5$\mu$M ionomycin and 2 hours incubation in 2 mM 6-DMAP at 19~20 hours post-hCG before microinjection. In the first and second generation NT, the unsynchronized 16-cell stage embryos were used as nuclear donor. The separated donor blastomeres were injected into the enucleated activated recipient oocytes by micromanipulation and were electrofused by electrical stimulation of single pulse for 60 $\mu$sec at 1.25kV/cm in $Ca^2$+, $Mg^2$+ - free 0.28 M mannitol solution. In the non-preactivation group, the electrofusion and electrical stimulation was given 3 pulses for 60 $\mu$sec at 1.25 kV/cm in 100$\mu$M $Ca^2$+, $Mg^2$+ 0.28 M mannitol solution. The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in TCM-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. The results obtained were summarized as follows: 1. In the first generational NT embryos, the electrofusion rate of preactivated and non-activated oocytes(80.4 and 87.8%) was not significantly different, but in the second generational NT embryos, the electrofusion rate was significantly(P<0.05) higher in the non-activated oocytes(85.7%) than in the preactivated oocytes(70.1%). 2) In the first and second generational NT embryos, the developmental potential to biastocyst stage was significantly(P<0.05) higher in the preactivated oocytes(39.3 and35.7%) than in the non-preactivated oocytes(16.0 and 13.3%). No significant difference in the developmental potential was shown between the first and second generational NT embryos derived from the preactivated oocytes. In conclusion, it may be efficient to use the oocytes preactivated with ionomycin and 6-DMAP for the multiple production of cloned embryos by recycling nuclear transfer.

  • PDF

Analysis of Immunomodulating Gene Expression by cDNA Microarray in $\beta$-Glucan-treated Murine Macrophage

  • Sung, Su-Kyong;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.98-98
    • /
    • 2003
  • ${\beta}$-(1,3)-D-Glucans have been known to exhibit antitumor and antimicrobial activities. The presence of dectin-1,${\alpha}$, ${\beta}$-glucan receptor of dendritic cell, on macrophage has been controvertial. RT-PCR analysis led to the detection of dectin-1${\alpha}$ and ${\beta}$ in murine macrophage Raw264.7 cell line. Among the various organs of mouse, dectin-1${\alpha}$ and ${\beta}$ were detected in the thymus, lung, spleen, stomach and intestine. To analyze gene expression modulated by ${\beta}$-glucan treated murine Raw264.7 macrophage, total mRNA was applied to cDNA microarray to interrogate the expression of 7,000 known genes. cDNA chip analysis showed that ${\beta}$-glucan of P. osteatus increased gene expressions of immunomodulating genes, membrane antigenic proteins, chemokine ligands, complements, cytokines, various kinases, lectin associated genes and oncogenes in Raw 264.7 cell line. When treated with ${\beta}$-glucan of P. osteatus and LPS, induction of gene expression of TNF-${\alpha}$ and IFN-R1 was confirmed by RT-PCR analysis. Induction of TNF-R type II expression was confirmed by FACS analysis. IL-6 expression was abolished by EDTA in ${\beta}$-glucan and LPS treated Raw264.7 cell line, indicating that ${\beta}$-glucan binds to dectin-l in a Ca$\^$++/ -dependent manner. To increase antitumor efficacy of ${\beta}$-glucan, ginsenoside Rh2 (GRh2) was co-treated with ${\beta}$-glucan in vivo and in vitro tests. IC$\sub$50/ values of GRh2 were 20 and 25 $\mu\textrm{g}$/$m\ell$ in SNU-1 and B16 melanoma F10 cell line, respectively. Co-treatment with ${\beta}$-glucan and GRh2 showed synergistic antitumor activity with cisplatin and mitomycin C both in vitro and in vivo. Single or co-treatment with ${\beta}$-glucan and GRh2 increased tumor bearing mouse life span. Co-treatment with ${\beta}$-glucan and GRh2 showed more increased life span with mitomycin C than that with cisplatin. Antitumor activities were 67% and 72 % by co-injection with ${\beta}$-glucan and GRh2 in the absence or presence of mitomycin C, respectively.

  • PDF

Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity

  • Lee, Gunsup;Cho, SeungChan;Hoang, Phuong Mai;Kim, Dongjun;Lee, Yongjun;Kil, Eui-Joon;Byun, Sung-June;Lee, Taek-Kyun;Kim, Dae-Hyun;Kim, Sunghan;Lee, Sukchan
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • 3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and $10{\mu}g$ 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 $LD_{50}$ PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% ($5{\mu}g$) and 47% ($10{\mu}g$). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.