• 제목/요약/키워드: Single cell Performance

검색결과 494건 처리시간 0.034초

주파수 변화에 따른 태양전지 전기적 특성 분석 (Analysis of the Electrical Properties of Solar Cell According to Variation of the Frequency)

  • 김성걸;홍창우;이경섭
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.372-376
    • /
    • 2012
  • This study focused on the performance characteristics of solar cell using the impedance technique. We measured an impedance according to frequency from 1 Hz until 1 MHz. It could know that the impedance was decreased according to the frequency increases in solar cell. The impedance of single crystal solar cell was 0.61 ${\Omega}$ at 1 Hz, and kept almost settled value to $1{\times}10^2$ Hz. However, the impedance of polycrystal solar cell was $7{\times}10^3{\Omega}$ at 1 Hz.

동결/해동 조건에서 기체확산층이 고분자전해질연료전지의 내구성에 미치는 영향에 관한 연구 (Investigation of Gas Diffusion Layer Effects on the Freeze/Thaw Condition Durability in PEFCs)

  • 임수진;박구곤;박진수;손영준;임성대;양태현;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.309-316
    • /
    • 2009
  • The effect of gas diffusion layers (GDLs) on the freeze/thaw condition durability in polymer electrolyte fuel cells (PEFCs) were investigated. For this purpose, three kinds of GDLs, such as, felt, paper and cloth types with different basic properties have been first prepared, then the changes in the properties and performance of cells was observed during the freeze/thaw cycles ranging from -30 to $70^{\circ}C$. The performance evaluations were conducted by using the single cells consisting of different GDLs. The performance degradation and the cell resistance increase could be directly correlated. The physical destruction of electrode was shown by SEM analysis. The mechanically supporting ability on the interface between the cell components can help enhancing the durability of PEFCs in the freeze/thaw condition.

황화수소 피독이 고분자전해질 막 연료전지의 성능에 미치는 영향 (The performance of PEMFC after hydrogen sulfide poisoning under various operating conditions)

  • 이수;진석환;김상명
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.57-63
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrades when hydrogen sulfide ($H_2S$) is present in the fuel hydrogen gas; this is referred to as $H_2S$ poisoning. This paper reveals $H_2S$ poisoning on PEMFC by measuring electrical performance of single cell FC under various operating conditions. The severity of $H_2S$ poisoning depended on $H_2S$ concentration under best operating conditions($65^{\circ}C$ of cell temperature and 100% of anode humidification). $H_2S$ adsorption occured on the surface of catalyst layer on MEA, but not on the gas diffusion layer(GDL) by analyzing SEM/EDX data. In addition, MEA poisoning by $H_2S$ was cumulative but reversible. After poisoning for less than 150 min, performance of PEMFC was recovered up to 80% by just inert nitrogen gas purging.

Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell

  • Kim, Min-Sik;Lim, Sin-Muk;Song, Min-Young;Cho, Hyun-Jin;Choi, Yun-Ho;Yu, Jong-Sung
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.336-342
    • /
    • 2010
  • Different oxidation treatments on CNTs using diluted 4.0 M $H_2SO_4$ solution at room temperature and or at $90^{\circ}C$ reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards $H_2$ oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at $90^{\circ}C$ for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.

Present Status of Thin Film Solar Cells Using Textured Surfaces: A Brief Review

  • Park, Hyeongsik;Iftiquar, S.M.;Le, Anh Huy Tuan;Ahn, Shihyun;Kang, Junyoung;Kim, Yongjun;Yi, Junsin;Kim, Sunbo;Shin, Myunghun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.275-279
    • /
    • 2016
  • This is a brief review on light trapping in Si based thin film solar cells with textured surfaces and transparent conducting oxide front electrodes. The light trapping scheme appears to be essential in improving device efficiency over 10%. As light absorption in a thin film solar cells is not sufficient, light trapping becomes necessary to be effectively implemented with a textured surface. Surface texturing helps in the light trapping, and thereby raises short circuit current density and its efficiency. Such a scheme can be adapted to single junction as well as tandem solar cell, amorphous or micro-crystalline devices. A tandem cell is expected to have superior performance in comparison to a single junction cell and random surface textures appears to be preferable to a periodic structures.

고효율 Solar Cell 제조를 위한 Firing 공정 조건의 최적화 (Optimization of the firing process condition for high efficiency solar cells on single-crystalline silicon)

  • 정세원;이성준;홍상진;한승수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2006년도 추계학술발표회 초록집
    • /
    • pp.4-5
    • /
    • 2006
  • This paper represents modeling and optimization techniques for solar cell process on single-crystalline float zone (FZ) wafers with high efficiency; There were the four significant processes : i)emitter formation by diffusion, anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); iii)screen-printing for front and back metallization; and iv)contact formation by firing. In order to increase the performance of solar cells, the contact formation process is modeled and optimized. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time, fabrication costs. The experiments were designed by using central composite design which is composed of $2^4$ factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the solar cell is modeled using neural networks. This model is used to analyse the characteristics of the process, and to optimize the process condition using genetic algorithms (GA). Finally, find optimal recipe for solar cell efficiency.

  • PDF

다중경로 라이시안 페이딩 채널에서 Multi-Carrier DS-CDMA 시스템의 성능 해석 (Performance Analysis of Multi-Carrier DS-CDMA System in Multipath Rician Fading Channel)

  • 김영철;노재성;오창헌;조성준
    • 한국전자파학회논문지
    • /
    • 제12권3호
    • /
    • pp.378-390
    • /
    • 2001
  • 본 논문은 다중경로 라이시안 페이딩과 다중접속간섭이 함께 존재하는 단일 셀 내의 Multi-Carrier DS-CDMA 시스템은 오율 성능을 분석하고, 이를 Single-Carrier Ds-CDMA 시스템의 오율 성능과 비교하였다. 또한, 다중경로 페이딩과 다중접속간섭에 의하여 열화된 Multi-Carrier DS-CDMA 시스템의 성능 개선을 위해 부호화율이 1/2, 1/3 그리고 1/4인 콘볼루션 부호화 기법을 채용하여, 이로부터 얻어지는 Multi-Carrier DS-CDMA 시스템의 성능 특성을 알아 보았다. 분석 결과, 다중경로 페이딩과 다중접속간섭이 존재하는 채널에서 Single-Carrier DS-CDMA 시스템의 RAKE 수신기의 가지를 증가시키거나 Multi-Carrier DS-CDMA 시스템의 반송파의 수를 적정하게 선택함으로써 시스템의 사용자의 수를 결정할 수 있음을 알 수 있었다. 또한, 콘볼루션 부호가 적용된 Multi-Carrier CS-CCMA 시스템은 부호이득과 전력제한의 사이의 trade off를 고려하여 부호화율을 선택하여야 함을 알 수 있었다. 결과적으로 Multi-Carrier DS-CDMA 시스템은 반송파의 수가 증가할수록 처리이득은 감소하나 주파수 다이버시티 효과로 인하여 오율 성능이 개선되었으며, 낮은 칩율을 사용한 시스템의 구성이 가능함을 알 수 있었다.

  • PDF

귀금속 촉매를 사용한 직접 보로하이드라이드 연료전지의 특성 연구 (Performance Charateristics of Direct Borohydrides Fuel Cell with Novel Catalyst)

  • 정민경;신동열;설용건;정두환
    • 전기화학회지
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2005
  • 직접보로하이드라이드 연료전지는(direct borohydrides fuel cell. DBFC) 직접메탄을 연료전지가 갖는 메탄을 크로스오버(crossover)문제를 해결할 수 있어서, 휴대용 및 이동용 전원으로 활용하기 위하여 새롭게 대두되고있는 연료전지이다. 본 논문에서는 직접보로하이드라이드 연료전지의 전극제조 공정 확립을 위하여 여러 가지의 연료극 및 공기극 촉매를 선정하고 열가압법 (hot pressing)으로 전극을 제조하여 이에 대한 성능 특성을 고찰하였다. 공기극 촉매로는 Pt/C와 Pt black을 사용하였고, 연료극 촉매로는 Pt/C. Pt black, Au/C, $AB_5$ alloy를 사용하였다 제조된 전극 촉매는 XRD, SEM, EDS 등을 통한 특성 분석과 단위전지 운전을 통하여 I-V특성 분석이 이루어졌다. 다양한 촉매 조합을 통하여 촉매별 단전지 테스트를 한 결과 공기극 및 연료극 촉매를 Pt/C로 했을 때 가장 높은 성능인 366mW/mg을 얻을 수 있었다.

PEMFC용 금속분리판 코팅 기술 개발 : II. 코팅 금속분리판 연료전지 성능 특성 연구 (Development of Surface Coating Technology for Metallic Bipolar Hate in PEMFC : II. Study on the PEMEC Performance of Coated Metallic Bipolar Plate)

  • 윤용식;정경우;양유창;안승균;전유택;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.352-355
    • /
    • 2006
  • As the stainless steel has good corrosion resistance, mechanical property and ease of manufacture, it has been studied as the candidate material of metallic bipolar plate for automotive PIMFC. But, metal is dissolved under fuel cell operating conditions Dissolved ions contaminate a membrane electrode assembly (MEA) and, decrease the fuel cell performance. In addition, metal oxide formation on the surface of stainless steel increases the contact resistance in the fuel cell. These problems have been acted as an obstacle in the application of stainless steel to bipolar plate. Therefore, many kinds of coating technologies have been examined in order to solve these problems. In this study, stainless steel was coated in order to achieve high conductivity and corrosion resistance by several methods. Contact resistance was measured by using a tensile tester and impedance analyzer Corrosion characteristics of coated stainless steel were examined by Tafel-extrapolation method from the polarization curves in a solution simulating the anodic and cathodic environment of PEMFC. Fuel cell performance was also evaluated by single cell test. We tested various coated metal bipolar plate and conventional and graphite were also tested as comparative samples. In the result, coated stainless steel bipolar plate exhibited better cell performance than graphite to bipolar plate.

  • PDF

1kW 이하의 평판형 SOFC 스택제작 및 성능평가 (Fabrication and Performance Test in Stacks of Planar Solid Oxide Fuel Cell under 1kW)

  • 조남웅;황순철;한상무;김영우;김승구;전재호;김도형;전중환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.121-124
    • /
    • 2007
  • Stacks of solid oxide fuel cell under 1kW max power were designed on planar type employing anode supported cell and metallic interconnects. The stacks composed of 3-cells, 8-cells, and 16-cells were fabricated by using single cell purchased from Indec, sealant and interconnect prepared at RIST. In performance test of the final 16-cells stacks, OCV was recorded to be 16.7 V. Peak power and power density were 1 kW, 0.77 $W/cm^{2}$ at $820^{\circ}C$, respectively. In addition, the long term degradation rate of the power exhibited 2.25 % in 500 h at $750^{\circ}C$.

  • PDF