• Title/Summary/Keyword: Single Shell

Search Result 324, Processing Time 0.028 seconds

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

COMPARISON OF TWO SCATTERING PHASE FUNCTIONS IN MULTIPLE SCATTERING ENVIRONMENT (다중산란 환경에서의 두개의 산란 위상함수 비교)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.4
    • /
    • pp.113-118
    • /
    • 2010
  • The Henyey-Greenstein (H-G) phase function, which is characterized by a single parameter, has been generally used to approximate the realistic dust-scattering phase function in investigating scattering properties of the interstellar dust. Draine (2003) proposed a new analytic phase function with two parameters and showed that the realistic phase function is better represented by his phase function. If the H-G and Draine's phase functions are significantly different, using the H-G phase function in radiative transfer models may lead to wrong conclusions about the dust-scattering properties. Here, we investigate whether the H-G and Draine's phase functions would indeed produce significant differences in radiative transfer calculations for two simple configurations. For the uniformly distributed dust with an illuminating star at the center, no significant difference is found. However, up to ~ 20% of difference is found when the central star is surrounded by a spherical-shell dust medium and the radiation of $\lambda$ < $2000\;{\AA}$ is considered. It would mean that the investigation of dust-scattering properties using the H-G phase function may produce errors of up to ~ 20% depending on the geometry of dust medium and the radiation wavelength. This amount of uncertainty would be, however, unavoidable since the configurations of dust density and radiation sources are only approximately available.

Design Modification and Correlation Verification between Reattachment Flow of Dispersed Jet and Local Thinning of Feedwater Heater (충돌로 인해 분산된 2상 제트스팀의 재부착 현상과 국부 감육 상관관계 규명 및 설계개선에 관한 연구)

  • Kim, Hyung-Joon;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.483-495
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line-inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

Simulation study of dust-scattered Far-Ultraviolet emission in the Orion-Eridanus Superbubble

  • Jo, Young-Soo;Min, Kyoung-Wook;Lim, Tae-Ho;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.98.1-98.1
    • /
    • 2012
  • We present the results of dust scattering simulations carried out for the Orion-Eridanus Superbubble region by comparing them with observations made in the far-ultraviolet. The albedo and the phase function asymmetry factor (g-factor) of interstellar grains were estimated, as were the distance and thickness of the dust layers. The results are as follows: [0.43]_(-0.04)^(+0.02) for the albedo and [0.43]_(-0.2)^(+0.2) for the g-factor, in good agreement with previous determinations and theoretical predictions. The distance of the assumed single dust layer, modeled for the Orion Molecular Cloud Complex, was estimated to be ~110 pc, and the thickness ranged from ~130 at the core to ~50 pc at the boundary for the region of present interest, implying that the dust cloud is located in front of the superbubble. The simulation result also indicates that a thin (~10 pc) dust shell surrounds the inner X-ray cavities of hot gas at a distance of ~70-90 pc.

  • PDF

PROPERTIES OF THE MOLECULAR CLUMP AND THE ASSOCIATED ULTRACOMPACT H II REGION IN THE GAS SHELL OF THE EXPANDING H II REGION SH 2-104

  • Minh, Young Chol;Kim, Kee-Tae;Yan, Chi-Hung;Park, Yong-Sun;Lee, Seokho;Lal, Dharam Vil;Hasegawa, Tatsuhiko;Zhang, X.Z.;Kuan, Yi-Jeng
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.179-185
    • /
    • 2014
  • We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the "collect and collapse" process. Physical parameters of the UC H II region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC H II region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the H II region.

Test of Insulation of Double Pancake Windings for a 1MVA HTS Transformer (1MVA 고온초전도 변압기용 더블 팬케이크 권선의 절연시험)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Choi, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Hahn, Song-Yop;Song, Hee-Suck;Park, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1015-1017
    • /
    • 2003
  • In a research and development team of high temperature superconducting (HTS) transformer for power distribution, prior to manufacture a single phase 1MVA 22.9 kV/6.6 kV HTS transformer, a 1MVA transformer for insulation test with windings made of copper tapes with the same size as BSCCO-2223 HTS tape was manufactured. The test transformer was composed of both the copper windings of double pancake type and the shell type core of laminated silicon steel plates. The characteristics tests of the test transformer were performed, such as no load test, load test and short test at 77k using liquid nitrogen. Insulation tests, lightning impulse test, power-frequency voltage test and external insulation test, were accomplished also.

  • PDF

A Case Study on the Stability Assessment of Structures by Blast-induced Vibration (발파진동에 대한 구조물 안정성 평가 - 지하비축기지 건설 사례)

  • Lee, Chung-In;Choi, Yong-Kun;Jong, Yong-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.479-484
    • /
    • 2005
  • The test blasts were carried out by detonating some single blastholes at two upper sites of the underground storage cavern the crude oil. One was performed at the entrance site of the construction tunnel and the other at the middle part of the underground storage cavern. Based on the blast-induced vibration measured by the test blasts, we suggested the propagation equations of blasting vibration that were capable of estimating the peak particle velocity. In addition, in order to assess the stability of the nearest ground storage tank, we did the frequency analysis and the response spectrum analysis with the particle velocity-time history and the particle acceleration-time history that were measured by the test blast carried out on the entrance site of the construction tunnel. In result, it was predicted that the displacement on the highest part of the tank shell was less than the allowable displacement.

  • PDF

Interactive analysis of a building fame resting on pile foundation

  • Chore, H.S.
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.367-384
    • /
    • 2014
  • The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.