• Title/Summary/Keyword: Single Paper Assessment

Search Result 220, Processing Time 0.033 seconds

RSM-based Probabilistic Reliability Analysis of Axial Single Pile Structure (축하중 단말뚝구조물의 RSM기반 확률론적 신뢰성해석)

  • Huh Jung-Won;Kwak Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.51-61
    • /
    • 2006
  • An efficient and accurate hybrid reliability analysis method is proposed in this paper to quantify the risk of an axially loaded single pile considering pile-soil interaction behavior and uncertainties in various design variables. The proposed method intelligently integrates the concepts of the response surface method, the finite difference method, the first-order reliability method, and the iterative linear interpolation scheme. The load transfer method is incorporated into the finite difference method for the deterministic analysis of a single pile-soil system. The uncertainties associated with load conditions, material and section properties of a pile and soil properties are explicitly considered. The risk corresponding to both serviceability limit state and strength limit state of the pile and soil is estimated. Applicability, accuracy and efficiency of the proposed method in the safety assessment of a realistic pile-soil system subjected to axial loads are verified by comparing it with the results of the Monte Carlo simulation technique.

Monitoring butterflies with an unmanned aerial vehicle: current possibilities and future potentials

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • The world of technology is pleasantly evolving to a stage where small robotic aid may be used to ease the work of researchers, and to one day bring more accurate results than the current human abilities allow. In the research field of species monitoring in biology, unmanned aerial vehicles (UAVs) have begun to play an important role in how research is approached, analyzed, and then applied for further investigation, particularly by focusing on a single species. This paper uses data that has been collected from June to October 2015, to demonstrate how the innovative idea of using UAVs to monitor a particular species will bring a positive development in conservation research, and what it was able to achieve in this research field so far. More precisely, we examine the potential of UAVs to take center stage in future research, as well as their current accuracy. This paper describes the use of the commercially available Phantom 2 Vision+ for the detection, assessment, and monitoring of the butterfly species Libythea celtis, demonstrating how it can help the monitoring of butterflies and how it could be developed for even more adventurous and detailed research in the future.

Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant

  • Zvoncek, Pavol;Nusbaumer, Olivier;Torri, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.426-433
    • /
    • 2017
  • This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of $3600MW_{th}/1200MW_e$, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importances of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities).

Damping Analysis using IEEEST PSS and PSS2A PSS

  • Lee Sang-Seung;Kang Sang-Hee;Jang Gwang-Soo;Li Shan-Ying;Park Jong-Keun;Moon Seung-Il;Yoon Yong-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.271-278
    • /
    • 2006
  • This paper scrutinized the damping effects of installing the prototype PSSs by a transient analysis for eight buses of faults in the South Korean power system. The PSSs used have the co-PSS blocks for IEEEST model with a single input and the co+power PSS blocks for PSS2A model with dual inputs. The simulation tool was a TSAT(Transient Security Assessment Tool) developed by Powertech Labs Inc. The voltages of the transmission line for simulations were 765kV and 345kV, and the faults for eight cases were sequenced by considering the open state and the close state of the lines. In the simulations, the three-phase line to ground (L-G) fault generated different points for each region. The simulations were compared to the cases of no PSS, partial IEEEST and PSS2A, absolute IEEEST, and absolute PSS2A to show that the power system oscillation can be effectively damped by PSS modules. Simulations were conducted to confirm the effectiveness for the KEPCO (Korea Electric Power Corporation) power system.

Review on Clinical Trials of Chemotherapy Induced Toxicity with Acupuncture in PubMed Database (PubMed 검색을 통한 항암화학요법 부작용 관련 침 임상시험 현황 고찰)

  • Kim, Jong Yoon;Kim, Jin Youp;Kim, Nam Sik;Kim, So Jung;Oyungerel, Munkhgerel;Kim, Yong Suk;Choi, Do Young;Nam, Sang Soo
    • Journal of Acupuncture Research
    • /
    • v.30 no.2
    • /
    • pp.43-53
    • /
    • 2013
  • Objectives : The purpose of this study is to review of Clinical trials related to the treatment of chemotherapy induced-toxicity by acupuncture therapy. Methods : We searched PubMed by using word of "chemotherapy induced, acupuncture" (Limits : Full text available, 10 years, Clinical trials, Humans, English). We analyzed 15 research paper and examined published journals, years, countries, topic, study design, their results, interventions, participants and instruments of assessment. Results : Eleven journals with fifteen papers were searched. These papers were published in USA, Germany, etc. On the topic of these clinical trials, seven of them were about nausea(vomiting), two about peripheral neuropathy, two about hot flash, two about arthralgia and one about neutropenia, one about fatigue. Six of these studies were single blinded, randomized controlled trial. Twelve studies reported significant effect. The median for number of final participants was 35.5 persons. Assessment for outcomes were versatile questionnaire, nerve conduction studies, WBC, ANC, G-CSF examination, etc. Conclusions : Their median for impact factor was 3.650 and average modified Jadad score of six RCTs was 4.33. In order to provide appropriate evidence regarding the effectiveness of acupuncture in treatment for chemotherapy-induced toxicity, more rigorous and well-designed studies are necessary.

Earthquake induced torsion in buildings: critical review and state of the art

  • Anagnostopoulos, S.A.;Kyrkos, M.T.;Stathopoulos, K.G.
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.305-377
    • /
    • 2015
  • The problem of earthquake induced torsion in buildings is quite old and although it has received a lot of attention in the past several decades, it is still open. This is evident not only from the variability of the pertinent provisions in various modern codes but also from conflicting results debated in the literature. Most of the conducted research on this problem has been based on very simplified, highly idealized models of eccentric one-story systems, with single or double eccentricity and with load bearing elements of the shear beam type, sized only for earthquake action. Initially, elastic models were used but were gradually replaced by inelastic models, since building response under design level earthquakes is expected to be inelastic. Code provisions till today have been based mostly on results from one-story inelastic models or on results from elastic multistory idealizations. In the past decade, however, more accurate multi story inelastic building response has been studied using the well-known and far more accurate plastic hinge model for flexural members. On the basis of such research some interesting conclusions have been drawn, revising older views about the inelastic response of buildings based on one-story simplified model results. The present paper traces these developments and presents new findings that can explain long lasting controversies in this area and at the same time may raise questions about the adequacy of code provisions based on results from questionable models. To organize this review better it was necessary to group the various publications into a number of subtopics and within each subtopic to separate them into smaller groups according to the basic assumptions and/or limitations used. Capacity assessment of irregular buildings and new technologies to control torsional motion have also been included.

Individualized Traditional Korean Acupuncture for Knee Osteoarthritis : a Protocol for a Randomized Controlled Trial

  • Byun, Hyuk;Baek, Seung-Tae;Park, In-Shik;Kim, Kap-Sung;Kim, Sun-Woong;Choi, Sun-Mi;Lee, Seung-Deok
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.225-232
    • /
    • 2006
  • Objective : To test the hypotheses that individualized traditional Korean acupuncture improves pain and disability in patients with osteoarthritis of the knee and that benefits remain after stopping treatment more so than is the case for standardized minimal acupuncture. Design : Randomized single blind controlled trial with two intervention arms (individualized traditional Korean acupuncture, standardized minimal acupuncture) of six weeks' duration and three months follow-up. Setting : Acupuncture interventions were applied by two training doctors in the Department of Acupuncture and Moxibustion in a 1000-bed hospital. Assessment of the result was performed in a university-based laboratory. Participants : 50 patients with symptoms of knee osteoarthritis as diagnosed by an orthopedist. Intervention : Individualized traditional Korean acupuncture or standardized minimal acupuncture for six weeks. Main outcome measures: Primary outcome measure was pain as measured by the visual analogue scale. Secondary measures of pain and disability included the Western Ontario and McMaster Universities (WOMAC) index, Short Form-36 (SF-36), Lequesne Functional Index (LFI) score and Korean version of Health Assessment Questionnaire (KHAQ). Discussion : This paper presents detail on the rationale, design, methods and operational aspects of the trial.

  • PDF

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

Fragility Assessment of Agricultural Facilities Subjected to Volcanic Ash Fall Hazards (농업시설물에 대한 화산재 취약도 평가)

  • Ham, Hee Jung;Choi, Seung Hun;Lee, Sungsu;Kim, Ho-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • This paper presents findings from the assessment of the volcanic ash fragility for multi-hazard resisting vinyl greenhouse and livestock shed among the agricultural facilities. The volcanic ash fragility was evaluated by using a combination of the FOSM (first-order second-moment) method, available statistics of volcanic load, facility specifications, and building code. In this study, the evaluated volcanic ash fragilities represent the conditional probability of failure of the agricultural facilities over the full range of volcanic ash loads. For the evaluation, 6 types(ie., 2 single span, 2 tree crop, and 2 double span types) of multi-hazard resisting vinyl greenhouses and 3 types(ie., standard, coast, and mountain types) of livestock sheds are considered. All volcanic ash fragilities estimated in this study were fitted by using parameters of the GEV(generalized extreme value) distribution function, and the obtained parameters were complied into a database to be used in future. The volcanic ash fragilities obtained in this study are planning to be used to evaluate risk by volcanic ash when Mt. Baekdu erupts.

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.